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Preface

This monograph originates from lectures given at the General Relativity Trimester
at the Institut Henri Poincaré in Paris [1]; at the VII Mexican School on Gravi-
tation and Mathematical Physics in Playa del Carmen (Mexico) [2]; and at the
2008 International Summer School on Computational Methods in Gravitation and
Astrophysics held in Pohang (Korea) [3]. It is devoted to the 3+1 formalism of
general relativity, which constitutes among other things, the theoretical founda-
tions for numerical relativity. Numerical techniques are not covered here. For a
pedagogical introduction to them, we recommend instead the lectures by Choptuik
[4] (finite differences) and the review article by Grandclément and Novak [5]
(spectral methods), as well as the numerical relativity textbooks by Alcubierre [6],
Bona, Palenzuela-Luque and Bona-Casas [7] and Baumgarte and Shapiro [8].

The prerequisites are those of a general relativity course, at the undergraduate
or graduate level, like the textbooks by Hartle [9] or Carroll [10], or part I of
Wald’s book [11], as well as track 1 of the book by Misner, Thorne and Wheeler
[12]. The fact that the present text consists of lecture notes implies two things:

• the calculations are rather detailed (the experienced reader might say too
detailed), with an attempt to made them self-consistent and complete, trying to
use as infrequently as possible the famous phrases ‘‘as shown in paper XXX’’ or
‘‘see paper XXX for details’’;

• the bibliographical references do not constitute an extensive survey of the lit-
erature on the subject: articles have been cited in so far as they have a direct
connection with the main text.

The book starts with a chapter setting the mathematical background, which is
differential geometry, at a basic level (Chap. 2). This is followed by two purely
geometrical chapters devoted to the study of a single hypersurface embedded in
spacetime (Chap. 3) and to the foliation (or slicing) of spacetime by a family of
spacelike hypersurfaces (Chap. 4). The presentation is divided in two chapters to
distinguish between concepts which are meaningful for a single hypersurface and
those that rely on a foliation. The decomposition of the Einstein equation relative
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to the foliation is given in Chap. 5, giving rise to the Cauchy problem with
constraints, which constitutes the core of the 3+1 formalism. The ADM Hamil-
tonian formulation of general relativity is also introduced in this chapter. Chapter 6
is devoted to the decomposition of the matter and electromagnetic field equations,
focusing on the astrophysically relevant cases of a perfect fluid and a perfect
conductor (ideal MHD). An important technical chapter occurs then: Chap. 7
introduces some conformal transformation of the 3-metric on each hypersurface
and the corresponding rewriting of the 3+1 Einstein equations. As a by-product,
we also discuss the Isenberg-Wilson-Mathews (or conformally flat) approximation
to general relativity. Chapter 8 details the various global quantities associated with
asymptotic flatness (ADM mass, ADM linear momentum and angular momentum)
or with some symmetries (Komar mass and Komar angular momentum). In
Chap. 9, we study the initial data problem, presenting with some examples two
classical methods: the conformal transversetraceless method and the conformal
thin-sandwich one. Both methods rely on the conformal decomposition that has
been introduced in Chap. 7. The choice of spacetime coordinates within the 3+1
framework is discussed in Chap. 10, starting from the choice of foliation before
discussing the choice of the three coordinates in each leaf of the foliation. The
major coordinate families used in modern numerical relativity are reviewed.
Finally Chap. 11 presents various schemes for the time integration of the 3+1
Einstein equations, putting some emphasis on the most successful scheme to date,
the BSSN one. Appendix A is devoted to basic tools of the 3+1 formalism: the
conformal Killing operator and the related vector Laplacian, whereas Appendix B
provides some computer algebra codes based on the Sage system.

A web page is dedicated to the book, at the URL
http://relativite.obspm.fr/3p1

This page contains the errata, the clickable list of references, the computer
algebra codes described in Appendix B and various supplementary material.
Readers are invited to use this page to report any error that they may find in the
text.

I am deeply indebted to Michał Bejger, Philippe Grandclément, Alexandre Le
Tiec, Yuichiro Sekiguchi and Nicolas Vasset for the careful reading of a pre-
liminary version of these notes. I am very grateful to my friends and colleagues
Thomas Baumgarte, Michał Bejger, Luc Blanchet, Silvano Bonazzola, Brandon
Carter, Isabel Cordero-Carrión, Thibault Damour, Nathalie Deruelle, Guillaume
Faye, John Friedman, Philippe Grandclément, José Maria Ibáñez, José Luis
Jaramillo, Jean-Pierre Lasota, Jérôme Novak, Jean-Philippe Nicolas, Motoyuki
Saijo, Masaru Shibata, Keisuke Taniguchi, Koji Uryu, Nicolas Vasset and Loïc
Villain, for the numerous and fruitful discussions that we had about general rel-
ativity and the 3+1 formalism. I also warmly thank Robert Beig and Christian
Caron for their invitation to publish this text in the Lecture Notes in Physics series.

Meudon, September 2011 Éric Gourgoulhon
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Chapter 1
Introduction

The 3+1 formalism is an approach to general relativity that relies on the slicing
of the four-dimensional spacetime by three-dimensional surfaces (hypersurfaces).
These hypersurfaces have to be spacelike, so that the metric induced on them by
the Lorentzian spacetime metric [signature (−,+,+,+)] is Riemannian [signature
(+,+,+)]. From the mathematical point of view, this procedure allows to formulate
the problem of resolution of Einstein equations as a Cauchy problem with constraints.
From the pedestrian point of view, it amounts to a decomposition of spacetime into
“space” + “time”, so that one manipulates only time-varying tensor fields in some
“ordinary” three-dimensional space, where the scalar product is Riemannian. One
should stress that this space + time splitting is not some a priori structure of general
relativity but relies on the somewhat arbitrary choice of a time coordinate. The
3 + 1 formalism should not be confused with the 1+3 formalism (cf. e.g. Ref. [1]),
where the basic structure is a congruence of one-dimensional curves (mostly timelike
curves, i.e. worldlines), instead of a family of three-dimensional surfaces.

The 3+1 formalism originates from studies by Georges Darmois in the 1920s [2],
André Lichnerowicz in the 1930–1940s [3–5] and Yvonne Choquet-Bruhat (at that
time Yvonne Fourès-Bruhat) in the 1950s [6, 7].1 Notably, in 1952, Yvonne Choquet-
Bruhat was able to show that the Cauchy problem arising from the 3+1 decomposition
has locally a unique solution [6]. In the late 1950s and early 1960s, the 3+1 formal-
ism received some considerable impulse, being employed to develop Hamiltonian
formulations of general relativity by Dirac [8, 9], and Arnowitt, Deser and Misner
[10], referred to by the famous ADM initials. At the same epoch, Wheeler put for-
ward the concept of geometrodynamics and coined the names lapse and shift [11]. In
the 1970s, the 3+1 formalism became the basic tool for the nascent numerical rela-
tivity. A primordial role has been played by York, who developed a general method
to solve the initial data problem [12] and who put the 3+1 equations in the shape
used afterwards by the numerical community [13]. In the 1980 and 1990s, numerical

1 These three persons have some direct affiliation: Georges Darmois was the thesis adviser of
André Lichnerowicz, who was himself the thesis adviser of Yvonne Choquet-Bruhat.

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 1
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computations increased in complexity, from 1D (spherical symmetry) to 3D (no
symmetry at all). In parallel, a lot of studies have been devoted to formulating the
3+1 equations in a form suitable for numerical implementation. The authors who
participated to this effort are too numerous to be cited here but it is certainly relevant
to mention Takashi Nakamura and his school, who among other things initiated
the formulation which would become the popular BSSN scheme [14–17]. Needless
to say, a strong motivation for the expansion of numerical relativity has been the
development of gravitational wave detectors, either ground-based (LIGO, VIRGO,
GEO600, TAMA, LCGT) or in space (LISA/NGO project).

Today, most numerical codes for solving Einstein equations are based on the 3+1
formalism. Other approaches are the 2+2 formalism or characteristic formulation,
as reviewed by Winicour [18], the conformal field equations by Friedrich [19] as
reviewed by Frauendiener [20], or the generalized harmonic decomposition used by
Pretorius [21–23] and the Cornell-Caltech group [24, 25] for computing binary black
hole mergers.
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Chapter 2
Basic Differential Geometry

Abstract This first chapter recapitulates the basic concepts of differential geometry
that are used throughout the book. This encompasses differentiable manifolds, ten-
sor fields, affine connections, metric tensors, pseudo-Riemannian manifolds, Levi–
Civita connections, curvature tensors and Lie derivatives. The dimension of the
manifold and the signature of the metric are kept general so that the results can
be subsequently applied either to the whole spacetime or to some submanifold of it.

2.1 Introduction

The mathematical language of general relativity is mostly differential geometry.
We recall in this chapter basic definitions and results in this field, which we will
use throughout the book. The reader who has some knowledge of general relativity
should be familiar with most of them. We recall them here to make the text fairly self-
contained and also to provide definitions with sufficient generality, not limited to the
dimension 4—the standard spacetime dimension. Indeed we will manipulate mani-
folds whose dimension differs from 4, such as hypersurfaces (the building blocks of
the 3+1 formalism !) or 2-dimensional surfaces. In the same spirit, we do not stick
to Lorentzian metrics (such as the spacetime one) but discuss pseudo-Riemannian
metrics, which encompass both Lorentzian metrics and Riemannian ones. Accord-
ingly, in this chapter, M denotes a generic manifold of any dimension and g a
pseudo-Riemannian metric on M . In the subsequent chapters, the symbol M will
be restricted to the spacetime manifold and the symbol g to a Lorentzian metric
on M .

This chapter is not intended to a be a lecture on differential geometry, but a collec-
tion of basic definitions and useful results. In particular, contrary to the other chapters,
we state many results without proofs, referring the reader to classical textbooks on
the topic [1–6].

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 5
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6 2 Basic Differential Geometry

Fig. 2.1 Locally a manifold resembles R
n (n = 2 on the figure), but this is not necessarily the case

at the global level

2.2 Differentiable Manifolds

2.2.1 Notion of Manifold

Given an integer n ≥ 1, a manifold of dimension n is a topological space M
obeying the following properties:

1. M is a separated space (also called Hausdorff space): any two distinct points
of M admit disjoint open neighbourhoods.

2. M has a countable base1: there exists a countable family (Uk)k∈N of open sets
of M such that any open set of M can be written as the union (possibly infinite)
of some members of the above family.

3. Around each point of M , there exists a neighbourhood which is homeomorphic
to an open subset of R

n .

Property 1 excludes manifolds with “forks” and is very reasonable from a physical
point of view: it allows to distinguish between two points even after a small pertur-
bation. Property 2 excludes “too large” manifolds; in particular it permits setting up
the theory of integration on manifolds. It also allows for a differentiable manifold
of dimension n to be embedded smoothly into the Euclidean space R

2n (Whitney
theorem). Property 3 expresses the essence of a manifold: it means that, locally, one
can label the points of M in a continuous way by n real numbers (xα)α∈{0,...,n−1},
which are called coordinates (cf. Fig. 2.1). More precisely, given an open subset
U ⊂ M , a coordinate system or chart on U is a homeomorphism2

Φ : U ⊂ M −→ Φ(U ) ⊂ R
n

p �−→ (x0, . . . , xn−1).
(2.1)

1 In the language of topology, one says that M is a second-countable space.
2 Let us recall that a homeomorphism between two topological spaces (here U and Φ(U )) is a
one-to-one map Φ such that both Φ and Φ−1 are continuous.
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Remark 2.1 In relativity, it is customary to label the n coordinates by an index
ranging from 0 to n − 1. Actually, this convention is mostly used when M is the
spacetime manifold (n = 4 in standard general relativity). The computer-oriented
reader will have noticed the similarity with the index ranging of arrays in the C/C++
or Python programming languages.

Remark 2.2 Strictly speaking the definition given above is that of a topological
manifold. We are saying manifold for short.

Usually, one needs more than one coordinate system to cover M . An atlas on M
is a finite set of couples (Uk, Φk)1≤k≤K , where K is a non-zero integer, Uk an open
set of M and Φk a chart on Uk, such that the union of all Uk covers M :

K⋃

k=1

Uk = M . (2.2)

The above definition of a manifold lies at the topological level (Remark 2.2),
meaning that one has the notion of continuity, but not of differentiability. To provide
the latter, one should rely on the differentiable structure of R

n, via the atlases: a
differentiable manifold is a manifold M equipped with an atlas (Uk, Φk)1≤k≤K

such that for any non-empty intersection Ui ∩ U j , the mapping

Φi ◦ Φ−1
j : Φ j (Ui ∩ U j ) ⊂ R

n −→ Φi (Ui ∩ U j ) ⊂ R
n (2.3)

is differentiable (i.e. C∞). Note that the above mapping is from an open set of R
n to

an open set of R
n, so that the invoked differentiability is nothing but that of R

n . The
atlas (Uk, Φk)1≤k≤K is called a differentiable atlas. In the following, we consider
only differentiable manifolds.

Remark 2.3 We are using the word differentiable for C∞, i.e. smooth.

Given two differentiable manifolds, M and M ′, of respective dimensions n and
n′, we say that a map φ : M → M ′ is differentiable iff in some (and hence all)
coordinate systems of M and M ′ (belonging to the differentiable atlases of M and
M ′), the coordinates of the image φ(p) are differentiable functions R

n → R
n′

of
the coordinates of p. The map φ is said to be a diffeomorphism iff it is one-to-one
and both φ and φ−1 are differentiable. This implies n = n′.

Remark 2.4 Strictly speaking a differentiable manifold is a couple (M ,A ) where
A is a (maximal) differentiable atlas on M . Indeed a given (topological) manifold
M can have non-equivalent differentiable structures, as shown by Milnor (1956)
[7] in the specific case of the unit sphere of dimension 7, S

7: there exist differen-
tiable manifolds, the so-called exotic spheres, that are homeomorphic to S

7 but not
diffeomorphic to S

7. On the other side, for n ≤ 6, there is a unique differentiable
structure for the sphere S

n . Moreover, any manifold of dimension n ≤ 3 admits a
unique differentiable structure. Amazingly, in the case of R

n, there exists a unique
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differentiable structure (the standard one) for any n �= 4, but for n = 4 (the space-
time case !) there exist uncountably many non-equivalent differentiable structures,
the so-called exotic R

4 [8].

2.2.2 Vectors on a Manifold

On a manifold, vectors are defined as tangent vectors to a curve. A curve is a subset
C ⊂ M which is the image of a differentiable function R → M :

P : R −→ M

λ �−→ p = P(λ) ∈ C .
(2.4)

Hence C = {P(λ)|λ ∈ R}. The function P is called a parametrization of C and
the variable λ is called a parameter along C . Given a coordinate system (xα) in a
neighbourhood of a point p ∈ C , the parametrization P is defined by n functions
Xα : R → R such that

xα(P(λ)) = Xα(λ). (2.5)

A scalar field on M is a function f : M → R. In practice, we will always con-
sider differentiable scalar fields. At a point p = P(λ) ∈ C , the vector tangent to C
associated with the parametrization P is the operator v which maps every scalar field
f to the real number

v( f ) = d f

dλ

∣∣∣∣
C

:= lim
ε→0

1

ε
[ f (P(λ + ε)) − f (P(λ))] . (2.6)

Given a coordinate system (xα) around some point p ∈ M , there are n curves
Cα through p associated with (xα) and called the coordinate lines: for each α ∈
{0, . . . , n − 1}, Cα is defined as the curve through p parametrized by λ = xα and
having constant coordinates xβ for all β �= α. The vector tangent to Cα parametrized
by xα is denoted ∂α. Its action on a scalar field f is by definition

∂α( f ) = d f

dxα

∣∣∣∣
Cα

= d f

dxα

∣∣∣∣ xβ=const
β �=α

.

Considering f as a function of the coordinates (x0, . . . , xn−1) (whereas strictly speak-
ing it is a function of the points on M ) we recognize in the last term the partial
derivative of f with respect to xα. Hence

∂α( f ) = ∂ f

∂xα
. (2.7)

Similarly, we may rewrite (2.6) as
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Fig. 2.2 The vectors at two points p and q on the manifold M belong to two different vector spaces:
the tangent spaces Tp(M ) and Tq (M )

v( f ) = lim
ε→0

1

ε

[
f (X0(λ + ε), . . . , Xn−1(λ + ε)) − f (X0(λ), . . . , Xn−1(λ))

]

= ∂ f

∂xα

dXα

dλ
= ∂α( f )

dXα

dλ
.

In the above equation and throughout the all book, we are using Einstein summation
convention: a repeated index implies a summation over all the possible values of this
index (here from α = 0 to α = n − 1). The above identity being valid for any scalar
field f, we conclude that

v = vα∂α , (2.8)

with the n real numbers

vα := dXα

dλ
, 0 ≤ α ≤ n − 1. (2.9)

Since every vector tangent to a curve at p is expressible as (2.8), we conclude
that the set of all vectors tangent to a curve at p is a vector space of dimen-
sion n and that (∂α) constitutes a basis of it. This vector space is called the
tangent vector space to M at p and is denoted Tp(M ). The elements of Tp(M )

are simply called vectors at p. The basis (∂α) is called the natural basis associ-
ated with the coordinates (xα) and the coefficients vα in (2.8) are called the
components of the vector v with respect to the coordinates(xα). The tangent vec-
tor space is represented at two different points in Fig. 2.2.

Contrary to what happens for an affine space, one cannot, in general, define
a vector connecting two points p and q on a manifold, except if p and q are
infinitesimally close to each other. Indeed, in the latter case, we may define the
infinitesimal displacement vector from p to q as the vector d� ∈ Tp(M ) whose
action on a scalar field f is
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d�( f ) = d f |p→q = f (q) − f (p). (2.10)

Since p and q are infinitesimally close, there is a unique (piece of) curve C going
from p to q and one has

d� = vdλ, (2.11)

where λ is a parameter along C , v the associated tangent vector at p and dλ the
parameter increment from p to q: p = P(λ) and q = P(λ+ dλ). The relation (2.11)
follows immediately from the definition (2.6) of v. Given a coordinate system, let
(xα) be the coordinates of p and (xα + dxα) those of q. Then from Eq. (2.10),

d�( f ) = d f = ∂ f

∂xα
dxα = dxα∂α( f ).

The scalar field f being arbitrary, we conclude that

d� = dxα∂α . (2.12)

In other words, the components of the infinitesimal displacement vector with respect
to the coordinates (xα) are nothing but the infinitesimal coordinate increments dxα.

2.2.3 Linear Forms

A fundamental operation on vectors consists in mapping them to real numbers, and
this in a linear way. More precisely, at each point p ∈ M , one defines a linear form
as a mapping3

ω : Tp(M ) −→ R

v �−→ 〈ω, v〉 (2.13)

that is linear: 〈ω, λv + u〉 = λ〈ω, v〉 + 〈ω, u〉 for all u, v ∈ Tp(M ) and λ ∈ R. The
set of all linear forms at p constitutes a n-dimensional vector space, which is called
the dual space of Tp(M ) and denoted by T ∗

p (M ). Given the natural basis (∂α) of
Tp(M ) associated with some coordinates (xα), there is a unique basis of T ∗

p (M ),

denoted by (dxα), such that

〈dxα, ∂β〉 = δα
β , (2.14)

where δα
β is the Kronecker symbol: δα

β = 1 if α = β and 0 otherwise. The basis
(dxα) is called the dual basis of the basis (∂α). The notation (dxα) stems from the

3 We are using the same bra-ket notation as in quantum mechanics to denote the action of a linear
form on a vector.
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fact that if we apply the linear form dxα to the infinitesimal displacement vector
(2.12), we get nothing but the number dxα:

〈dxα, d�〉 = 〈dxα, dxβ∂β〉 = dxβ 〈dxα, ∂β〉
︸ ︷︷ ︸

δα
β

= dxα. (2.15)

Remark 2.5 Do not confuse the linear form dxα with the infinitesimal increment
dxα of the coordinate xα.

The dual basis can be used to expand any linear form ω, thereby defining its
components ωα with respect to the coordinates (xα):

ω = ωαdxα. (2.16)

In terms of components, the action of a linear form on a vector takes then a very
simple form:

〈ω, v〉 = ωαvα . (2.17)

This follows immediately from (2.16), (2.8) and (2.14).
A field of linear forms, i.e. a (smooth) map which associates to each point p ∈ M

a member of Tp(M ) is called a 1-form . Given a smooth scalar field f on M , there
exists a 1-form canonically associated with it, called the gradient of f and denoted
∇ f. At each point p ∈ M ,∇ f is the unique linear form which, once applied to the
infinitesimal displacement vector d� from p to a nearby point q, gives the change in
f between points p and q:

d f := f (q) − f (p) = 〈∇ f, d�〉. (2.18)

Since d f = ∂ f/∂xαdxα, Eq. (2.15) implies that the components of the gradient with
respect to the dual basis are nothing but the partial derivatives of f with respect to the
coordinates (xα):

∇ f = ∂ f

∂xα
dxα . (2.19)

Remark 2.6 In non-relativistic physics, the gradient is very often considered as a
vector field and not as a 1-form. This is so because one associates implicitly a vector−→
ω to any 1-form ω via the Euclidean scalar product of R

3 : ∀−→v ∈ R
3, 〈ω,−→v 〉 =

−→
ω · −→v . Accordingly, formula (2.18) is rewritten as d f = −→∇ f · d�. But we should
keep in mind that, fundamentally, the gradient is a linear form and not a vector.

Remark 2.7 For a fixed value of α, the coordinate xα can be considered as a scalar
field on M . If we apply (2.19) to f = xα, we then get

∇xα = dxα. (2.20)
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Hence the dual basis to the natural basis (∂α) is formed by the gradients of the
coordinates.

Of course the natural bases are not the only possible bases in the vector space
Tp(M ). One may use a basis (eα) that is not related to a coordinate system on M ,

for instance an orthonormal basis with respect to some metric. There exists then a
unique basis (eα) of the dual space T ∗

p (M ) such that4

〈eα, eβ〉 = δα
β . (2.21)

(eα) is called the dual basis to (eα). The relation (2.14) is a special case of (2.21),
for which eα = ∂α and eα = dxα.

2.2.4 Tensors

Tensors are generalizations of both vectors and linear forms. At a point p ∈ M , a
tensor of type (k, �) with (k, �) ∈ N

2, also called tensor k times contravariant and
� times covariant, is a mapping

T : T ∗
p (M ) × · · · × T ∗

p (M )
︸ ︷︷ ︸

k times

×Tp(M ) × · · · × Tp(M )
︸ ︷︷ ︸

� times

−→ R

(ω1, . . . ,ωk, v1, . . . , v�) �−→ T (ω1, . . . ,ωk, v1, . . . , v�)

(2.22)

that is linear with respect to each of its arguments. The integer k +� is called the
tensor valence, or sometimes the tensor rank or order. Let us recall the canonical
duality T ∗∗

p (M ) = Tp(M ), which means that every vector v can be considered as
a linear form on the space T ∗

p (M ), via T ∗
p (M ) → R,ω �→ 〈ω, v〉. Accordingly a

vector is a tensor of type (1, 0). A linear form is a tensor of type (0, 1). A tensor of
type (0, 2) is called a bilinear form. It maps couples of vectors to real numbers, in
a linear way for each vector.

Given a basis (eα) of Tp(M ) and the corresponding dual basis (eα) in T ∗
p (M ),

we can expand any tensor T of type (k, �) as

T = Tα1...αk
β1...β�

eα1 ⊗ . . . ⊗ eαk ⊗ eβ1 ⊗ . . . ⊗ eβ� , (2.23)

where the tensor product eα1 ⊗ . . .⊗ eαk ⊗ eβ1 ⊗ . . .⊗ eβ� is the tensor of type (k, �)

for which the image of (ω1, . . . ,ωk, v1, . . . , v�) as in (2.22) is the real number

k∏

i=1

〈ωi , eαi 〉 ×
�∏

j=1

〈eβ j , v j 〉.

4 Notice that, according to the standard usage, the symbol for the vector eα and that for the linear
form eα differ only by the position of the index α.
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Notice that all the products in the above formula are simply products in R. The nk+�

scalar coefficients T α1...αk
β1...β�

in (2.23) are called the components of the tensor T
with respect to the basis (eα). These components are unique and fully characterize
the tensor T .

Remark 2.8 The notations vα and ωα already introduced for the components of a
vector v [Eq. (2.8)] or a linear form ω [Eq. (2.16)] are of course the particular cases
(k, �) = (1, 0) or (k, �) = (0, 1) of (2.23), with, in addition, eα = ∂α and eα = dxα.

2.2.5 Fields on a Manifold

A tensor field of type (k, �) is a map which associates to each point p ∈ M a tensor
of type (k, �) on Tp(M ). By convention, a scalar field is considered as a tensor field
of type (0, 0). We shall consider only smooth fields.

Given an integer p, a p-form is a tensor field of type (0, p), i.e. a field of p-linear
forms, that is fully antisymmetric whenever p ≥ 2. This definition generalizes that
of a 1-form given in Sect. 2.2.3.

A frame field or moving frame is a n-uplet of vector fields (eα) such that at each
point p ∈ M , (eα(p)) is a basis of the tangent space Tp(M ). If n = 4, a frame
field is also called a tetrad and if n = 3, it is called a triad.

Given a vector field v and a scalar field f, the function M → R, p �→ v|p ( f )

clearly defines a scalar field on M , which we denote naturally by v( f ). We may then
define the commutator of two vector fields u and v as the vector field [u, v] whose
action on a scalar field f is

[u, v]( f ) := u(v( f )) − v(u( f )). (2.24)

With respect to a coordinate system (xα), it is not difficult, via (2.8), to see that the
components of the commutator are

[u, v]α = uμ ∂vα

∂xμ
− vμ ∂uα

∂xμ
. (2.25)

2.3 Pseudo-Riemannian Manifolds

2.3.1 Metric Tensor

A pseudo-Riemannian manifold is a couple (M , g) where M is a differentiable
manifold and g is a metric tensor on M , i.e. a tensor field obeying the following
properties:



14 2 Basic Differential Geometry

1. g is a tensor field of type (0, 2): at each point p ∈ M , g(p) is a bilinear form
acting on vectors in the tangent space Tp(M ):

g(p) : Tp(M ) × Tp(M ) −→ R

(u, v) �−→ g(u, v).
(2.26)

2. g is symmetric: g(u, v) = g(v, u).

3. g is non-degenerate: at any point p ∈ M , a vector u such that ∀v ∈ Tp(M ),

g(u, v) = 0 is necessarily the null vector.

The properties of being symmetric and non-degenerate are typical of a
scalar product. Accordingly, one says that two vectors u and v are g-orthogonal
(or simply orthogonal if there is no ambiguity) iff g(u, v) = 0. Moreover, when
there is no ambiguity on the metric (usually the spacetime metric), we are using a
dot to denote the scalar product of two vectors taken with g:

∀(u, v) ∈ Tp(M ) × Tp(M ), u · v = g(u, v) . (2.27)

In a given basis (eα) of Tp(M ), the components of g is the matrix (gαβ) defined
by formula (2.23) with (k, �) = (0, 2):

g = gαβ eα ⊗ eβ. (2.28)

For any couple (u, v) of vectors we have then

g(u, v) = gαβuαvβ. (2.29)

In particular, considering the natural basis associated with some coordinate system
(xα), the scalar square of an infinitesimal displacement vector d� [cf. Eq. (2.10)] is

ds2 := g(d�, d�) = gαβdxαdxβ. (2.30)

This formula, which follows from the value (2.12) of the components of d�, is called
the expression of the line element on the pseudo-Riemannian manifold (M , g). It
is often used to define the metric tensor in general relativity texts. Note that contrary
to what the notation may suggest, ds2 is not necessarily a positive quantity.

2.3.2 Signature and Orthonormal Bases

An important feature of the metric tensor is its signature: in all bases of Tp(M )

where the components (gαβ) form a diagonal matrix, there is necessarily the same
number, s say, of negative components and the same number, n − s, of positive
components. The independence of s from the choice of the basis where (gαβ) is



2.3 Pseudo-Riemannian Manifolds 15

diagonal is a basic result of linear algebra named Sylvester’s law of inertia. One
writes:

sign g = (−, . . . ,−︸ ︷︷ ︸
s times

,+, . . . ,+︸ ︷︷ ︸
n−s times

). (2.31)

If s = 0, g is called a Riemannian metric and (M , g) a Riemannian manifold.
In this case, g is positive-definite, which means that

∀v ∈ Tp(M ), g(v, v) ≥ 0 (2.32)

and g(v, v) = 0 iff v = 0. A standard example of Riemannian metric is of course
the scalar product of the Euclidean space R

n .

If s = 1, g is called a Lorentzian metric and (M , g) a Lorentzian manifold.
One may then have g(v, v) < 0; vectors for which this occurs are called timelike,
whereas vectors for which g(v, v) > 0 are called spacelike, and those for which
g(v, v) = 0 are called null. The subset of Tp(M ) formed by all null vectors is
termed the null cone of g at p.

A basis (eα) of Tp(M ) is called a g-orthonormal basis (or simply orthonormal
basis if there is no ambiguity on the metric) iff 5

g(eα, eα) = −1 for 0 ≤ α ≤ s − 1
g(eα, eα) = 1 for s ≤ α ≤ n − 1
g(eα, eβ) = 0 for α �= β.

(2.33)

2.3.3 Metric Duality

Since the bilinear form g is non-degenerate, its matrix (gαβ) in any basis (eα) is
invertible and the inverse is denoted by (gαβ):

gαμgμβ = δα
β . (2.34)

The metric g induces an isomorphism between Tp(M ) (vectors) and T ∗
p (M ) (linear

forms) which, in index notation, corresponds to the lowering or raising of the index
by contraction with gαβ or gαβ. In the present book, an index-free symbol will
always denote a tensor with a fixed covariance type (such as a vector, a 1-form, a
bilinear form, etc.). We will therefore use a different symbol to denote its image under
the metric isomorphism. In particular, we denote by an underbar the isomorphism
Tp(M ) → T ∗

p (M ) and by an arrow the reverse isomorphism T ∗
p (M ) → Tp(M ):

1. For any vector u in Tp(M ), u stands for the unique linear form such that

∀v ∈ Tp(M ), 〈u, v〉 = g(u, v). (2.35)

5 No summation on α is implied.
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However, we will omit the underbar on the components of u, since the position
of the index allows us to distinguish between vectors and linear forms, following
the standard usage: if the components of u in a given basis (eα) are denoted by
uα, the components of u in the dual basis (eα) are then denoted by uα and are
given by

uα = gαμuμ. (2.36)

2. For any linear form ω in T ∗
p (M ),

−→
ω stands for the unique vector of Tp(M )

such that

∀v ∈ Tp(M ), g(
−→
ω , v) = 〈ω, v〉. (2.37)

As for the underbar, we will omit the arrow on the components of −→
ω by denoting

them ωα; they are given by

ωα = gαμωμ. (2.38)

3. We extend the arrow notation to bilinear forms on Tp(M ) (type-(0, 2) tensor):

for any bilinear form T , we denote by
−→
T the tensor of type (1, 1) such that

∀(u, v) ∈ Tp(M ) × Tp(M ), T (u, v) = −→
T (u, v) = u · −→

T (v), (2.39)

and by
�
T the tensor of type (2, 0) defined by

∀(u, v) ∈ Tp(M ) × Tp(M ), T (u, v) =�
T (u, v). (2.40)

Note that in the second equality of (2.39), we have considered
−→
T as an endomor-

phism Tp(M ) → Tp(M ), which is always possible for a tensor of type (1, 1).

If Tαβ are the components of T in some basis (eα), the components of
−→
T and

�
T

are respectively

(
−→
T )αβ = T α

β = gαμTμβ (2.41)

(
�
T )αβ = T αβ = gαμgβvTμv. (2.42)

Remark 2.9 In mathematical literature, the isomorphism induced by g between
Tp(M ) and T ∗

p (M ) is called the musical isomorphism, because a flat or a sharp
symbol is used instead of, respectively, the underbar and the arrow introduced above:

u� = u and ω = −→
ω .
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2.3.4 Levi–Civita Tensor

Let us assume that M is an orientable manifold, i.e. that there exists a n-form6 on
M (n being M ’s dimension) that is continuous on M and nowhere vanishing. Then,
given a metric g on M , one can show that there exist only two n-forms ε such that
for any g-orthonormal basis (eα),

ε(e0, . . . , en−1) = ±1. (2.43)

Picking one of these two n-forms amounts to choosing an orientation for M . The
chosen ε is then called the Levi-Civita tensor associated with the metric g. Bases
for which the right-hand side of (2.43) is +1 are called right-handed, and those
for which it is −1 are called left-handed. More generally, given a (not necessarily
orthonormal) basis (eα) of Tp(M ), one has necessarily ε(e0, . . . , en−1) �= 0 and
one says that the basis is right-handed or left-handed iff ε(e0, . . . , en−1) > 0 or < 0,

respectively.
If (xα) is a coordinate system on M such that the corresponding natural basis

(∂α) is right-handed, then the components of ε with respect to (xα) are given by

εα1 ... αn = √|g| [α1, . . . , αn] , (2.44)

where g stands for the determinant of the matrix of g’s components with respect to
the coordinates (xα):

g := det(gαβ) (2.45)

and the symbol [α1, . . . , αn] takes the value 0 if any two indices (α1, . . . , αn) are
equal and takes the value 1 or −1 if (α1, . . . , αn) is an even or odd permutation,
respectively, of (0, . . . , n − 1).

2.4 Covariant Derivative

2.4.1 Affine Connection on a Manifold

Let us denote by T (M ) the space of smooth vector fields on M .7 Given a vector field
v ∈ T (M ), it is not possible from the manifold structure alone to define its variation
between two neighbouring points p and q. Indeed a formula like dv := v(q)−v(p) is

6 Cf. Sect. 2.2.5 for the definition of a n-form.
7 The experienced reader is warned that T (M ) does not stand for the tangent bundle of M ; it
rather corresponds to the space of smooth cross-sections of that bundle. No confusion should arise
because we shall not use the notion of bundle.
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meaningless because the vectors v(q) and v(p) belong to two different vector spaces,
Tq(M ) and Tp(M ) respectively (cf. Fig. 2.2). Note that for a scalar field, this
problem does not arise [cf. Eq. (2.18)]. The solution is to introduce an extra-structure
on the manifold, called an affine connection because, by defining the variation of a
vector field, it allows one to connect the various tangent spaces on the manifold.

An affine connection on M is a mapping

∇ : T (M ) × T (M ) −→ T (M )

(u, v) �−→ ∇uv
(2.46)

which satisfies the following properties:

1. ∇ is bilinear (considering T (M ) as a vector space over R).
2. For any scalar field f and any pair (u, v) of vector fields:

∇ f uv = f ∇uv. (2.47)

3. For any scalar field f and any pair (u, v) of vector fields, the following Leibniz
rule holds:

∇u( f v) = 〈∇ f, u〉v + f ∇uv, (2.48)

where ∇ f stands for the gradient of f as defined in Sect. 2.2.3.

The vector ∇uv is called the covariant derivative of v along u.

Remark 2.10 Property 2 is not implied by property 1, for f is a scalar field, not a real
number. Actually, property 2 ensures that at a given point p ∈ M , the value of ∇uv
depends only on the vector u(p) ∈ Tp(M ) and not on the behaviour of u around p;
therefore the role of u is only to give the direction of the derivative of v.

Given an affine connection, the variation of a vector field v between two neigh-
bouring points p and q, is defined as

dv := ∇d�v, (2.49)

d� being the infinitesimal displacement vector connecting p and q [cf. Eq. (2.10)]. One
says that v is parallelly transported from p to q with respect to the connection ∇
iff dv = 0.

Given a frame field (eα)onM , the connection coefficients of an affine connection
∇ with respect to (eα) are the scalar fields Γ γ

αβ defined by the expansion, at each
point p ∈ M , of the vector ∇eβ eα(p) onto the basis (eα(p)):

∇eβ eα =: Γ μ
αβ eμ . (2.50)

An affine connection is entirely defined by the connection coefficients. In other
words, there are as many affine connections on a manifold of dimension n as there
are possibilities of choosing n3 scalar fields Γ γ

αβ.
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Given v ∈ T (M ), one defines a tensor field of type (1, 1),∇v, called the
covariant derivative of v with respect to the affine connection ∇, by the follow-
ing action at each point p ∈ M :

∇v(p) : T ∗
p (M ) × Tp(M ) −→ R

(ω, u) �−→ 〈ω,∇ũv(p)〉, (2.51)

where ũ is any vector field which performs some extension of u around p: ũ(p) = u.

As already noted (cf. Remark 2.10), ∇ũv(p) is independent of the choice of ũ, so
that the mapping (2.51) is well defined. By comparing with (2.22), we verify that
∇v(p) is a tensor of type (1, 1).

One can extend the covariant derivative to all tensor fields by (i) demanding that
for a scalar field the action of the affine connection is nothing but the gradient (hence
the same notation ∇ f ) and (ii) using the Leibniz rule. As a result, the covariant
derivative of a tensor field T of type (k, �) is a tensor field ∇T of type (k, � + 1). Its
components with respect a given field frame (eα) are denoted

∇γ T α1...αk
β1...β�

:= (∇T )α1...αk
β1...β�γ (2.52)

and are given by

∇γ T α1...αk
β1...β�

= eγ (T α1...αk
β1...β�

) +
k∑

i=1

Γ αi
σγ T α1...

i↓
σ ...αk

β1...β�

−
�∑

i=1

Γ σ
βi γ T α1...αk

β1... σ↑
i

...β�
, (2.53)

where eγ (T α1...αk
β1...β�

) stands for the action of the vector eγ on the scalar field
T α1...αk

β1...β�
, resulting from the very definition of a vector (cf. Sect. 2.2.2). In par-

ticular, if (eα) is a natural frame associated with some coordinate system (xα), then
eα = ∂α and the above formula becomes [cf. (2.7)]

∇γ T α1...αk
β1...β�

= ∂

∂xγ
T α1...αk

β1...β�
+

k∑

i=1

Γ αi
σγ T α1...

i↓
σ ...αk

β1...β�

−
�∑

i=1

Γ σ
βi γ T α1...αk

β1... σ↑
i

...β�
. (2.54)

Remark 2.11 Notice the position of the index γ in Eq. (2.52): it is the last one on
the right-hand side. According to (2.23), ∇T is then expressed as

∇T = ∇γ T α1...αk
β1...β�

eα1 ⊗ . . . ⊗ eαk ⊗ eβ1 ⊗ . . . ⊗ eβ� ⊗ eγ . (2.55)

Because eγ is the last 1-form of the tensorial product on the right-hand side, the nota-
tion T α1...αk

β1...β�;γ instead of ∇γ T α1...αk
β1...β�

would have been more appropriate.
The index convention (2.55) agrees with that of MTW [9] [cf. their Eq. (10.17)].
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The covariant derivative of the tensor field T along a vector v is defined by

∇vT := ∇T (., . . . , .︸ ︷︷ ︸
k+� slots

, u). (2.56)

The components of ∇vT are then vμ∇μT α1...αk
β1...β�

. Note that ∇vT is a tensor field
of the same type as T . In the particular case of a scalar field f, we will use the notation
v · ∇ f for ∇v f :

v · ∇ f := ∇v f = 〈∇ f, v〉 = v( f ). (2.57)

The divergence with respect to the affine connection ∇ of a tensor field T of type
(k, �) with k ≥ 1 is the tensor field denoted ∇ · T of type (k − 1, �) and whose
components with respect to any frame field are given by

(∇ · T )α1...αk−1
β1...β�

= ∇μTα1...αk−1μ
β1...β�

. (2.58)

Remark 2.12 For the divergence, the contraction is performed on the last upper index
of T .

2.4.2 Levi–Civita Connection

On a pseudo-Riemannian manifold (M , g) there is a unique affine connection ∇
such that

1. ∇ is torsion-free, i.e. for any scalar field f, ∇∇ f is a field of symmetric bilinear
forms; in components:

∇α∇β f = ∇β∇α f. (2.59)

2. The covariant derivative of the metric tensor vanishes identically:

∇g = 0 . (2.60)

∇ is called the Levi–Civita connection associated with g. In this book, we shall
consider only such connections.

With respect to the Levi–Civita connection, the Levi–Civita tensor ε introduced
in Sect. 2.3.4 shares the same property as g:

∇ε = 0 . (2.61)

Given a coordinate system (xα) on M , the connection coefficients of the Levi–
Civita connection with respect to the natural basis (∂α) are called the Christoffel
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symbols; they can be evaluated from the partial derivatives of the metric components
with respect to the coordinates:

Γ γ
αβ = 1

2
gγμ

(
∂gμβ

∂xα
+ ∂gαμ

∂xβ
− ∂gαβ

∂xμ

)
. (2.62)

Note that the Christoffel symbols are symmetric with respect to the lower two indices.
For the Levi–Civita connection, the expression for the divergence of a vector takes

a rather simple form in a natural basis associated with some coordinates (xα). Indeed,
combining Eqs. (2.58) and (2.54), we get for v ∈ T (M ),

∇ · v = ∇μvμ = ∂vμ

∂xμ
+ Γ μ

σμvσ .

Now, from (2.62), we have

Γ μ
αμ = 1

2
gμv ∂gμv

∂xα
= 1

2

∂

∂xα
ln |g| = 1√|g|

∂

∂xα

√|g|, (2.63)

where g := det(gαβ) [Eq. (2.45)]. The last but one equality follows from the general
law of variation of the determinant of any invertible matrix A:

δ(ln | det A|) = tr(A−1 × δA) , (2.64)

where δ denotes any variation (derivative) that fulfills the Leibniz rule, tr stands for
the trace and × for the matrix product. We conclude that

∇ · v = 1√|g|
∂

∂xμ

(√|g| vμ
)

. (2.65)

Similarly, for an antisymmetric tensor field of type (2, 0),

∇μ Aαμ = ∂ Aαμ

∂xμ
+ Γ α

σμ Aσμ

︸ ︷︷ ︸
0

+Γ μ
σμ Aασ = ∂ Aαμ

∂xμ
+ 1√|g|

∂

∂xσ

√|g| Aασ ,

where we have used the fact that Γ α
σμ is symmetric in (σ, μ), whereas Aσμ is anti-

symmetric. Hence the simple formula for the divergence of an antisymmetric tensor
field of (2, 0):

∇μ Aαμ = 1√|g|
∂

∂xμ

(√|g|Aαμ
)

. (2.66)
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2.4.3 Curvature

2.4.3.1 General Definition

The Riemann curvature tensor of an affine connection ∇ is defined by

Riem : T ∗(M ) × T (M )3 −→ C∞(M , R)

(ω, w, u, v) �−→ 〈
ω,∇u∇vw − ∇v∇uw − ∇[u,v]w

〉
,

(2.67)

where T ∗(M ) stands for the space of 1-forms on M ,T (M ) for the space of vector
fields on M andC∞(M , R) for the space of smooth scalar fields on M . The above
formula does define a tensor field on M , i.e. the value of Riem(ω, w, u, v) at a given
point p ∈ M depends only upon the values of the fields ω, w, u and v at p and not
upon their behaviours away from p, as the gradients in Eq. (2.67) might suggest. We
denote the components of this tensor in a given basis (eα), not by Riemγ

δαβ, but
by Rγ

δαβ. The definition (2.67) leads then to the following expression, named the
Ricci identity:

∀w ∈ T (M ),
(∇α∇β − ∇β∇α

)
wγ = Rγ

μαβwμ. (2.68)

Remark 2.13 In view of this identity, one may say that the Riemann tensor measures
the lack of commutativity of two successive covariant derivatives of a vector field. On
the opposite, for a scalar field and a torsion-free connection, two successive covariant
derivatives always commute [cf. Eq. (2.59)].

In a coordinate basis, the components of the Riemann tensor are given in terms of
the connection coefficients by

Rα
βμv = ∂Γ α

βv

∂xμ
− ∂Γ α

βμ

∂xv
+ Γ α

σμΓ σ
βv − Γ α

σvΓ
σ
βμ . (2.69)

From the definition (2.67), the Riemann tensor is clearly antisymmetric with
respect to its last two arguments (u, v):

Riem(., ., u, v) = −Riem(., ., v, u). (2.70)

In addition, it satisfies the cyclic property

Riem(., u, v, w) + Riem(., w, u, v) + Riem(., v, w, u) = 0. (2.71)

The covariant derivatives of the Riemann tensor obeys the Bianchi identity

∇ρ Rα
βμv + ∇μ Rα

βvρ + ∇v Rα
βρμ = 0 . (2.72)
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2.4.3.2 Case of a Pseudo-Riemannian Manifold

The Riemann tensor of the Levi–Civita connection obeys the additional antisymme-
try:

Riem(ω, w, ., .) = −Riem(w,
−→
ω , ., .). (2.73)

Combined with (2.70) and (2.71), this implies the symmetry property

Riem(ω, w, u, v) = Riem(u, v,−→ω , w). (2.74)

A pseudo-Riemannian manifold (M , g)with a vanishing Riemann tensor is called
a flat manifold; in this case, g is said to be a flat metric. If in addition, it has a
Riemannian signature, g is called an Euclidean metric.

2.4.3.3 Ricci Tensor

The Ricci tensor of the affine connection ∇ is the field of bilinear forms R defined
by

R : T (M ) × T (M ) −→ C∞(M , R)

(u, v) �−→ Riem(eμ, u, eμ, v).
(2.75)

This definition is independent of the choice of the basis (eα) and its dual counterpart
(eα). In terms of components:

Rαβ := Rμ
αμβ . (2.76)

Remark 2.14 Following the standard usage, we denote the components of the
Riemann and Ricci tensors by the same letter R, the number of indices allowing
us to distinguish between the two tensors. On the other hand, we are using different
symbols, Riem and R, when employing the ‘intrinsic’ notation.

For the Levi–Civita connection associated with the metric g, the property (2.74)
implies that the Ricci tensor is symmetric:

R(u, v) = R(v, u). (2.77)

In addition, one defines the Ricci scalar (also called scalar curvature) as the trace
of the Ricci tensor with respect to the metric g:

R := gμv Rμv. (2.78)

The Bianchi identity (2.72) implies the divergence-free property

∇ · −→
G = 0 , (2.79)
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where
−→
G in the type-(1, 1) tensor associated by metric duality [cf. (2.39)] to the

Einstein tensor:

G := R − 1

2
R g . (2.80)

Equation (2.79) is called the contracted Bianchi identity.

2.4.4 Weyl Tensor

Let (M , g) be a pseudo-Riemannian manifold of dimension n.
For n = 1, the Riemann tensor vanishes identically, i.e. (M , g) is necessarily

flat. The reader who has in mind a curved line in the Euclidean plane R
2 might be

surprised by the above statement. This is because the Riemann tensor represents the
intrinsic curvature of a manifold. For a line, the curvature that is not vanishing is the
extrinsic curvature, i.e. the curvature resulting from the embedding of the line in R

2.

We shall discuss in more details the concepts of intrinsic and extrinsic curvatures in
Chap. 3.

For n = 2, the Riemann tensor is entirely determined by the knowledge of the
Ricci scalar R, according to the formula:

Rγ
δαβ = R

(
δγ

αgδβ − δγ
βgδα

)
(n = 2). (2.81)

For n = 3, the Riemann tensor is entirely determined by the knowledge of the Ricci
tensor, according to

Rγ
δαβ =Rγ

αgδβ − Rγ
βgδα + δγ

α Rδβ − δγ
β Rδα

+ R

2

(
δγ

βgδα − δγ
αgδβ

)
(n = 3). (2.82)

For n ≥ 4, the Riemann tensor can be split into (i) a “trace-trace” part, rep-
resented by the Ricci scalar R [Eq. (2.78)], (ii) a “trace” part, represented by the
Ricci tensor R [Eq. (2.76)], and (iii) a “traceless” part, which is constituted by the
Weyl conformal curvature tensor, C:

Rγ
δαβ = Cγ

δαβ + 1

n − 2

(
Rγ

α gδβ − Rγ
β gδα + δγ

α Rδβ − δ
γ
β Rδα

)

+ 1

(n − 1)(n − 2)
R

(
δ
γ
β gδα − δγ

α gδβ

)
. (2.83)

The above relation may be taken as the definition of C. It implies that C is traceless:
Cμ

αμβ = 0. The other possible traces are zero thanks to the symmetry properties of
the Riemann tensor.

Remark 2.15 The decomposition (2.83) is also meaningful for n = 3, but it then
implies that the Weyl tensor vanishes identically [compare with (2.82)].
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2.5 Lie Derivative

As discussed in Sect. 2.4.1, the notion of a derivative of a vector field on a manifold
M requires the introduction of some extra-structure on M . In Sect. 2.4.1, this extra-
structure was an affine connection and in Sect. 2.4.2 a metric g (which provides
naturally an affine connection: the Levi–Civita one). Another possible extra-structure
is a “reference” vector field, with respect to which the derivative is to be defined.
This is the concept of the Lie derivative, which we discuss here.

2.5.1 Lie Derivative of a Vector Field

Consider a vector field u on M , called hereafter the flow. Let v be another vector
field on M , the variation of which is to be studied. We can use the flow u to transport
the vector v from one point p to a neighbouring one q and then define rigorously the
variation of v as the difference between the actual value of v at q and the transported
value via u. More precisely the definition of the Lie derivative of v with respect to
u is as follows (see Fig. 2.3). We first define the image Φε(p) of the point p by the
transport by an infinitesimal “distance” ε along the field lines of u as Φε(p) = q,

where q is the point close to p such that the infinitesimal displacement vector from p
to q is −→pq = εu(p) (cf. Sect. 2.2.2). Besides, if we multiply the vector v(p) by some
infinitesimal parameter λ, it becomes an infinitesimal vector at p. Then there exists a

unique point p′ close to p such that λv(p) = −→
pp′. We may transport the point p′ to a

point q ′ along the field lines of u by the same “distance” ε as that used to transport p

to q: q ′ = Φε(p′) (see Fig. 2.3).
−→
qq ′ is then an infinitesimal vector at q and we define

the transport by the distance ε of the vector v(p) along the field lines of u according
to

Φε(v(p)) := 1

λ

−→
qq ′. (2.84)

Φε(v(p)) is a vector in Tq(M ). We may then subtract it from the actual value of the
field v at q and define the Lie derivative of v along u by

Luv := lim
ε→0

1

ε
[v(q) − Φε(v(p))] . (2.85)

Let us consider a coordinate system (xα) adapted to the field u in the sense that
u = ∂0, where ∂0 is the first vector of the natural basis associated with the coordinates
(xα). We have, from the definitions of points q, p′ and q ′,

xα(q) = xα(p) + εδα
0

xα(p′) = xα(p) + λvα(p)

xα(q ′) = xα(p′) + εδα
0,



26 2 Basic Differential Geometry

Fig. 2.3 Geometrical
construction of the Lie
derivative of a vector field:
given a small parameter λ,

each extremity of the arrow
λv is dragged by some small
parameter ε along u, to form
the vector denoted by
Φε(λv). The latter is then
compared with the actual
value of λv at the point q, the
difference (divided by λε)
defining the Lie derivative
Luv

so that

(qq ′)α = xα(p′) − xα(p) = λvα(p).

Accordingly, (2.84) and (2.85) result in

(Luv)α = lim
ε→0

1

ε

[
vα(q) − vα(p)

]

= lim
ε→0

1

ε

[
vα(x0 + ε, x1, . . . , xn−1) − vα(x0, x1, . . . , xn−1)

]
.

Hence, in adapted coordinates, the Lie derivative is simply obtained by taking the
partial derivative of the vector components with respect to x0:

Luvα = ∂vα

∂x0 , (2.86)

where we have used the standard notation for the components of a Lie deriv-
ative: Luvα := (Luv)α. Besides, using the fact that the components of u are
uα = (1, 0, . . . , 0) in the adapted coordinate system, we notice that the compo-
nents of the commutator of u and v, as given by (2.25), are

[u, v]α = ∂vα

∂x0 .

This is exactly (2.86): [u, v]α = Luvα. We conclude that the Lie derivative of a
vector with respect to another one is actually nothing but the commutator of these
two vectors:

Luv = [u, v] . (2.87)

Thanks to formula (2.25), we may then express the components of the Lie derivative
in an arbitrary coordinate system:
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Luvα = uμ ∂vα

∂xμ
− vμ ∂uα

∂xμ
. (2.88)

Thanks to the symmetry property of the Christoffel symbols, the partial derivatives
in Eq. (2.88) can be replaced by the Levi–Civita connection ∇ associated with some
metric g, yielding

Luvα = uμ∇μvα − vμ∇μuα. (2.89)

2.5.2 Generalization to Any Tensor Field

The Lie derivative is extended to any tensor field by (i) demanding that for a scalar
field f, Lu f = 〈∇ f, u〉 and (ii) using the Leibniz rule. As a result, the Lie derivative
LuT of a tensor field T of type (k, �) is a tensor field of the same type, the components
of which with respect to a given coordinate system (xα) are

LuT α1...αk
β1...β�

= uμ ∂

∂xμ
T α1...αk

β1...β�
−

k∑

i=1

T α1...

i↓
σ ...αk

β1...β�

∂uαi

∂xσ

+
�∑

i=1

T α1...αk
β1... σ↑

i

...β�

∂uσ

∂xβi
. (2.90)

In particular, for a 1-form,

Luωα = uμ ∂ωα

∂xμ
+ ωμ

∂uμ

∂xα
. (2.91)

As for the vector case [Eq. (2.88)], the partial derivatives in Eq. (2.90) can be replaced
by the covariant derivative ∇ (or any other connection without torsion), yielding

LuT α1...αk
β1...β�

= uμ∇μT α1...αk
β1...β�

−
k∑

i=1

T α1...

i↓
σ ...αk

β1...β�
∇σ uαi

+
�∑

i=1

T α1...αk
β1... σ↑

i

...β�
∇βi u

σ . (2.92)

Remark 2.16 Both the covariant derivative (affine connection) and the Lie derivative
act on any kind of tensor field. For the specific class of tensor fields composed of
p-forms (cf. Sect. 2.2.5), there exists a third type of derivative, which does not require
any extra-structure on M : the exterior derivative d. For a 0-form (scalar field), d
coincides with the gradient, hence the notation dxα used to denote the gradient of
coordinates [cf. (2.20)]. We shall not use the exterior derivative in this book and so
will not discus it further (see the classical textbooks [3, 6, 9] or Ref. [10] for an
elementary introduction).
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Chapter 3
Geometry of Hypersurfaces

Abstract This chapter is devoted to hypersurfaces, which are at the basis of the 3+1
formalism for general relativity. After introducing the general notion of hypersur-
face embedded in spacetime, we focus on spacelike hypersurfaces, which are those
involved in the 3+1 formalism. We present the first and second fundamental forms,
giving rise to the notions of intrinsic and extrinsic curvatures. Finally, we derive the
Gauss–Codazzi equations relating the intrinsic and extrinsic curvatures of an hyper-
surface to the curvature of the ambient spacetime. All results in this chapter are valid
for any spacetime endowed with a Lorentzian metric, whether the latter is or not a
solution of Einstein equation.

3.1 Introduction

The basic geometrical settings on which the 3+1 formalism is built is a foliation of
spacetime by a one-parameter family of hypersurfaces. Before considering the whole
family of hypersurfaces in the next chapter, it is natural to start by examining the
properties of a single hypersurface.

Elementary presentations of hypersurfaces are given in numerous textbooks.
To mention a few in the physics literature, let us quote Chap. 3 of Poisson’s book
[1], Appendix D of Carroll’s one [2] and Appendix A of Straumann’s one [3]. The
presentation performed hereafter is relatively self-contained and requires only some
elementary knowledge of differential geometry, at the level of an introductory course
in general relativity (e.g. [4–6]).

3.2 Framework and Notations

We consider a spacetime (M , g), i.e. a differentiable manifold M of dimension 4
endowed with a metric g of signature (−,+,+,+). (M , g) is a Lorentzian manifold
(cf. Sect. 2.3.2).

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 29
DOI: 10.1007/978-3-642-24525-1_3, © Springer-Verlag Berlin Heidelberg 2012
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We assume that (M , g) is time orientable, that is, it is possible to divide continu-
ously over M each light cone of the metric g in two parts, past and future [5, 7]. We
denote by ∇ the Levi–Civita connection associated with g (cf. Sect. 2.4.2) and shall
call it the spacetime connection to distinguish it from other connections introduced
in the text. The Riemann tensor, Ricci tensor and Ricci scalar of the metric g (cf.
Sect. 2.4.2) are denoted with a superscript ‘4’, i.e. respectively 4Riem, 4R and 4R,

to distinguish them from their analogs on 3-dimensional hypersurfaces.
When dealing with indices, we adopt the following conventions: all Greek indices

run in {0, 1, 2, 3}. We will use letters from the beginning of the alphabet (α, β, γ, . . .)

for free indices, and letters starting from μ (μ, v, ρ, . . .) as dumb indices for
contraction (in this way the tensorial degree (valence) of any equation is imme-
diately apparent). Lower case Latin indices starting from the letter i (i, j, k, ...) run
in {1, 2, 3}, while those starting from the beginning of the alphabet (a, b, c, ...) run
in {2, 3} only.

3.3 Hypersurface Embedded in Spacetime

3.3.1 Definition

A hypersurface of M is the image Σ of a 3-dimensional manifold Σ̂ by an embed-
ding Φ : Σ̂ → M (Fig. 3.1):

Σ = Φ(Σ̂). (3.1)

Let us recall that embedding means that Φ : Σ̂ → Σ is a homeomorphism, i.e. a one-
to-one mapping such that both Φ and Φ−1 are continuous. The one-to-one character
guarantees that Σ does not “intersect itself”. A hypersurface can be defined locally
as the set of points for which a scalar field on M is constant. Denoting the scalar
field by t and setting the constant to zero, we get

∀p ∈ M , p ∈ Σ ⇐⇒ t (p) = 0. (3.2)

For instance, let us assume that Σ is a connected submanifold of M with topology
R

3. Then we may introduce locally a coordinate system of M , (xα) = (t, x, y, z),
such that t spans R and (x,y,z) are Cartesian coordinates spanning R

3. Σ is then
defined by the coordinate condition t = 0 [Eq. (3.2)] and an explicit form of the
mapping Φ can be obtained by considering (xi ) = (x, y, z) as coordinates on the
3-manifold Σ̂ :

Φ : Σ̂ −→ M

(x, y, z) �−→ (0, x, y, z).
(3.3)
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Fig. 3.1 Embedding Φ of the three-dimensional manifold Σ̂ into the four-dimensional manifold
M , defining the hypersurface Σ = Φ(Σ̂). The push-forward Φ∗v of a vector v tangent to some
curve C in Σ̂ is a vector tangent to Φ(C) in M

The embedding Φ “carries along” curves in Σ̂ to curves in M . Consequently it
also “carries along” vectors on Σ̂ to vectors on M (cf. Fig. 3.1). In other words, it
defines a mapping between Tp(Σ̂) and Tp(M ). This mapping is denoted by Φ∗
and is called the push-forward mapping; thanks to the adapted coordinate system
(xα) = (t, x, y, z), it can be made explicit as follows

Φ∗ : Tp(Σ̂) −→ Tp(M )

v = (vx , vy, vz) �−→ Φ∗v = (0, vx , vy, vz), (3.4)

where vi = (vx , vy, vz) denotes the components of the vector v with respect to the
natural basis (∂/∂xi ) of Tp(Σ) associated with the coordinates (xi ).

Conversely, the embedding Φ induces a mapping, called the pull-back mapping
and denoted Φ∗, between the linear forms on Tp(M ) and those on Tp(Σ̂) as follows

Φ∗ : T ∗
p (M ) −→ T ∗

p (Σ̂)

ω �−→ Φ∗ω : Tp(Σ̂) → R

v �→ 〈ω, Φ∗v〉.
(3.5)

Taking into account (3.4), the pull-back mapping can be made explicit:

Φ∗ : T ∗
p (M ) −→ T ∗

p (Σ̂)

ω = (ωt , ωx , ωy, ωz) �−→ Φ∗ω = (ωx , ωy, ωz),
(3.6)

where ωα denotes the components of the 1-form ω with respect to the basis (dxα)

associated with the coordinates (xα) (cf. Sect. 2.2.3).
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In what follows, we identify Σ̂ and Σ = Φ(Σ̂). In particular, we identify any
vector on Σ̂ with its push-forward image in M , writing simply v instead of Φ∗v.

The pull-back operation can be extended to the multi-linear forms on Tp(M ) in
an obvious way: if T is a n-linear form on Tp(M ), Φ∗T is the n-linear form on
Tp(Σ) defined by

∀(v1, . . . , vn) ∈ Tp(Σ)n, Φ∗T (v1, . . . , vn) = T (Φ∗v1, . . . , Φ∗vn). (3.7)

Remark 3.1 By itself, the embedding Φ induces a mapping from vectors on Σ to
vectors on M (push-forward mapping Φ∗) and a mapping from 1-forms on M to
1-forms on Σ (pull-back mapping Φ∗), but not in the reverse way. For instance,
one may define “naively” a reverse mapping F : Tp(M ) −→ Tp(Σ) by v =
(vt , vx , vy, vz) �−→ Fv = (vx , vy, vz), but it would then depend on the choice of
coordinates (t, x, y, z), which is not the case of the push-forward mapping defined
by Eq. (3.4). As we shall see below, if Σ is a spacelike hypersurface, a coordinate-
independent reverse mapping is provided by the orthogonal projector (with respect
to the ambient metric g) onto Σ.

A very important case of pull-back operation is that of the bilinear form g (i.e.
the spacetime metric), which defines the induced metric onΣ :

γ := Φ∗ g (3.8)

γ is also called the first fundamental form ofΣ . We shall also use the short-hand
name 3-metric to design it. Notice that

∀(u, v) ∈ Tp(Σ) × Tp(Σ), u · v = g(u, v) = γ (u, v). (3.9)

In terms of the coordinate system1 (xi ) = (x, y, z) of Σ, the components of γ are
deduced from (3.6):

γi j = gi j . (3.10)

The hypersurface Σ is said to be (cf. Sect. 2.3.2)

• spacelike iff the metric γ is Riemannian, i.e. has signature (+,+,+);
• timelike iff the metric γ is Lorentzian, i.e. has signature (−,+,+);
• null iff the metric γ is degenerate, i.e. has signature (0,+,+).

3.3.2 Normal Vector

Given a scalar field t on M such that the hypersurface Σ is defined as a level surface
of t [cf. Eq. (3.2)], the gradient 1-form ∇t is normal to Σ, in the sense that for every

1 Let us recall that by convention Latin indices run in {1, 2, 3}.
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vector v tangent to Σ, 〈∇t, v〉 = 0. The metric dual to ∇t, i.e. the vector
−→∇ t (the

component of which are ∇αt = gαμ∇μt ) is a vector normal to Σ and satisfies to
the following properties

•
−→∇ t is timelike iff Σ is spacelike;

•
−→∇ t is spacelike iff Σ is timelike;

•
−→∇ t is null iff Σ is null.

The vector
−→∇ t defines the unique direction normal to Σ. In other words, any other

vector v normal to Σ must be collinear to
−→∇ t : v = λ

−→∇ t. Notice a characteristic
property of null hypersurfaces: a vector normal to them is also tangent to them. This
is because null vectors are orthogonal to themselves.

In the case where Σ is not null, we can re-normalize
−→∇ t to make it a unit vector,

by setting

n :=
(
±−→∇ t · −→∇ t

)−1/2 −→∇ t, (3.11)

with the sign + for a timelike hypersurface and the sign − for a spacelike one. The
vector n is by construction a unit vector:

n · n = −1 if Σ is spacelike, (3.12)

n · n = 1 if Σ is timelike. (3.13)

n is one of the two unit vectors normal to Σ, the other one being n′ = −n.

Remark 3.2 In the case where Σ is a null hypersurface, such a construction is not
possible since

−→∇ t · −→∇ t = 0. Therefore there is no natural way to pick a privileged
normal vector in this case. Actually, given a null normal n, any vector n′ = λn, with
λ ∈ R

∗, is a perfectly valid alternative to n.

3.3.3 Intrinsic Curvature

If Σ is a spacelike or timelike hypersurface, then the induced metric γ is not degen-
erate. This implies that there is a unique connection (or covariant derivative) D on
the manifold Σ that is torsion-free and satisfies

Dγ = 0 . (3.14)

D is the Levi–Civita connection associated with the metric γ (cf. Sect. 2.4.2). The
Riemann tensor associated with this connection represents what can be called the
intrinsic curvature of (Σ, γ ). We shall denote it by Riem (without any superscript
‘4’, cf. Sect. 3.2), and its components by the letter R, as Rk

li j . Riem measures the
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non-commutativity of two successive covariant derivatives D, as expressed by the
Ricci identity (2.68):

∀v ∈ T (Σ), (Di D j − D j Di )v
k = Rk

li j v
l . (3.15)

The corresponding Ricci tensor is denoted R: Ri j = Rk
ik j [Eq. (2.76)] and the Ricci

scalar (scalar curvature) is denoted R: R = γ i j Ri j [Eq. (2.78) with g → γ ]. R is
also called the Gaussian curvature of (Σ, γ ).

Let us recall that in dimension 3, the Riemann tensor can be fully deduced from the
Ricci tensor, according to formula (2.82). In other words, the Weyl tensor identically
vanishes in dimension 3 (cf. Sect. 2.4.4).

3.3.4 Extrinsic Curvature

Beside the intrinsic curvature discussed above, there is another type of “curvature”
regarding hypersurfaces, namely that related to the “bending” of Σ in M . This
“bending” corresponds to the change of direction of the normal n as one moves
on Σ. More precisely, one defines the Weingarten map (sometimes called the
shape operator) as the endomorphism of Tp(Σ) which associates with each vec-
tor tangent to Σ the variation of the normal along that vector, the variation being
evaluated via the spacetime connection ∇:

χ : Tp(Σ) −→ Tp(Σ)

v �−→ ∇vn
(3.16)

This application is well defined (i.e. its image is in Tp(Σ) ) since the constant
character of n · n implies

n · χ(v) = n · ∇vn = 1

2
∇v(n · n) = 0,

which shows that χ(v) ∈ Tp(Σ). If Σ is not a null hypersurface, the Weingarten
map is uniquely defined (modulo the choice +n or −n for the unit normal), whereas
if Σ is null, the definition of χ depends upon the choice of the null normal n.

The fundamental property of the Weingarten map is to be self-adjoint with respect
to the induced metric γ :

∀(u, v) ∈ Tp(Σ) × Tp(Σ), u · χ(v) = χ(u) · v , (3.17)

where the dot means the scalar product with respect to γ [considering u and v as
vectors of Tp(Σ) ] or g [considering u and v as vectors of Tp(M )]. It is not difficult
to prove (3.17): it suffices to use the fact that the normal vector n is colinear to the
gradient of the scalar field t defining Σ via Eq. (3.2):
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n = α
−→∇ t,

where α := (−−→∇ t ·−→∇ t)−1/2 if Σ is spacelike, α := (
−→∇ t ·−→∇ t)−1/2 if Σ is timelike

and α is some non-vanishing field if Σ is null [cf. Eq. (3.11)]. Then

u · χ(v) − χ(u) · v = u · ∇vn − v · ∇un

= uμvv∇vnμ − vμuv∇vnμ

= uμvv(∇vnμ − ∇μnv)

= uμvv(∇vα∇μt + α∇v∇μt − ∇μα∇vt − α∇μ∇vt)

= uμ∇μt︸ ︷︷ ︸
0

vv∇vα − uμ∇μα vv∇vt︸ ︷︷ ︸
0

+αuμvv(∇v∇μt − ∇μ∇vt︸ ︷︷ ︸
0

)

= 0,

where the vanishing of the last term results from the torsion-free property (2.59) and
we have used the fact that u and v are tangent to Σ to set to zero the terms uμ∇μt
and vv∇vt. We have thus proved (3.17).

The eigenvalues of the Weingarten map, which are all real numbers since χ is
self-adjoint, are called the principal curvatures of the hypersurface Σ and the
corresponding eigenvectors define the so-called principal directions of Σ. The
mean curvature of the hypersurface Σ is the arithmetic mean of the principal
curvatures:

H := 1

3
(κ1 + κ2 + κ3) (3.18)

where the κi are the three eigenvalues of χ .

Remark 3.3 The curvatures defined above are not to be confused with the Gaussian
curvature introduced in Sect. 3.3.3. The latter is an intrinsic quantity, independent of
the way the manifold (Σ, γ ) is embedded in (M , g). On the contrary the principal
curvatures and mean curvature depend on the embedding. For this reason, they are
qualified of extrinsic.

The self-adjointness of χ implies that the bilinear form defined on Σ’s tangent
space by

K : Tp(Σ) × Tp(Σ) −→ R

(u, v) �−→ −u · χ(v)
(3.19)

is symmetric. It is called the second fundamental form of the hypersurface Σ. It is
also called the extrinsic curvature tensor ofΣ (cf. the remark above regarding the
qualifier ‘extrinsic’). K contains the same information as the Weingarten map.
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Fig. 3.2 Plane Σ as a
hypersurface of the
Euclidean space R

3. Notice
that the unit normal vector n
stays constant along Σ; this
implies that the extrinsic
curvature of Σ vanishes
identically. Besides, the sum
of angles of any triangle
lying in Σ is α + β + γ = π,

which shows that the
intrinsic curvature of (Σ, γ )

vanishes as well

Remark 3.4 The minus sign in the definition (3.19) is chosen so that K agrees with
the convention used in the numerical relativity community, as well as in the MTW
book [4]. Some other authors (e.g. Carroll [2], Poisson [1], Wald [5]) choose the
opposite convention.

If we make explicit the value of χ in the definition (3.19), we get

∀(u, v) ∈ Tp(Σ) × Tp(Σ), K (u, v) = −u · ∇vn . (3.20)

We shall denote by K the trace of the bilinear form K with respect to the metric γ ;
it is the opposite of the trace of the endomorphism χ and is equal to −3 times the
mean curvature of Σ:

K := γ i j Ki j = −3H. (3.21)

3.3.5 Examples: Surfaces Embedded in the Euclidean Space R
3

Let us illustrate the previous definitions with some hypersurfaces of a space which
we are very familiar with, namely R

3 endowed with the standard Euclidean metric.
In this case, the dimension is reduced by one unit with respect to the spacetime M
and the ambient metric g is Riemannian instead of Lorentzian (cf. Sect. 2.3.2). The
hypersurfaces are two-dimensional submanifolds of R

3, namely they are surfaces
by the ordinary meaning of this word.

In this section, and in this section only, we change our index convention to take
into account that the base manifold is of dimension 3 and not 4: until the next section,
the Greek indices run in {1, 2, 3} and the Latin indices run in {1, 2}.
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Fig. 3.3 Cylinder Σ as a hypersurface of the Euclidean space R
3. Notice that the unit normal

vector n stays constant when z varies at fixed ϕ, whereas its direction changes as ϕ varies at fixed
z. Consequently the extrinsic curvature of Σ vanishes in the z direction, but is non zero in the ϕ

direction. Besides, the sum of angles of any triangle lying in Σ is α + β + γ = π, which shows
that the intrinsic curvature of (Σ, γ ) is identically zero

Example 3.1 A plane in R
3

Let us take for Σ the simplest surface one may think of: a plane (cf. Fig. 3.2).
Let us consider Cartesian coordinates (Xα) = (x, y, z) on R

3, such that Σ is
the z = 0 plane. The scalar function t defining Σ according to Eq. (3.2) is then
simply t = z. (xi ) = (x, y) constitutes a coordinate system onΣ and the metric
γ induced by g on Σ has the components γi j = diag(1, 1) with respect to these
coordinates. It is obvious that this metric is flat: Riem = 0. The unit normal
n has components nα = (0, 0, 1) with respect to the coordinates (Xα). The
components of the gradient ∇n being simply given by the partial derivatives
∇βnα = ∂nα/∂ Xβ [the Christoffel symbols vanishes for the coordinates (Xα)

], we get immediately ∇n = 0. Consequently, the Weingarten map and the
extrinsic curvature vanish identically:

χ = 0 and K = 0. (3.22)

Example 3.2 A cylinder in R
3

Let us at present consider for Σ the cylinder defined by the equa-
tion t := ρ − a = 0, where ρ := √

x2 + y2 and a is a pos-
itive constant—the radius of the cylinder (cf. Fig. 3.3). Let us
introduce the cylindrical coordinates (xα) = (ρ, ϕ, z), such that
ϕ ∈ [0, 2π), x = ρ cos ϕ and y = ρ sin ϕ. Then (xi ) = (ϕ, z)
constitutes a coordinate system on Σ. The components of the induced
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metric in this coordinate system are given by

γi j dxi dx j = a2dϕ2 + dz2. (3.23)

It appears that this metric is flat, as for the plane considered above:

Riem = 0. (3.24)

Indeed, the change of coordinate η := aϕ (remember a is a constant!) trans-
forms the metric components into

γi ′ j ′dxi ′dx j ′ = dη2 + dz2, (3.25)

which exhibits the standard Cartesian shape of the flat metric.
To evaluate the extrinsic curvature of Σ, let us consider the unit normal n

toΣ. Its components with respect to the Cartesian coordinates (Xα) = (x, y, z)
are

nα =
( x

a
,

y

a
, 0

)
. (3.26)

a being constant, it is immediate to compute ∇βnα = ∂nα/∂ Xβ :

∇βnα = diag
(

a−1, a−1, 0
)

. (3.27)

From Eq. (3.20), the components of the extrinsic curvature K with respect to
the basis (xi ) = (ϕ, z) are

Ki j = K (∂ i , ∂ j ) = −∇βnα(∂i )
α(∂ j )

β, (3.28)

where (∂ i ) = (∂ϕ, ∂ z) = (∂/∂ϕ, ∂/∂z) denotes the natural basis associated
with the coordinates (ϕ, z) and (∂i )

α the components of the vector ∂ i with
respect to the natural basis (∂α) = (∂x , ∂ y, ∂ z) associated with the Cartesian
coordinates (Xα) = (x, y, z). Specifically, since ∂ϕ = −y∂ x + x∂ y, one has
(∂ϕ)α = (−y, x, 0) and (∂z)

α = (0, 0, 1). From Eqs. (3.27) and (3.28), we
then obtain

Ki j =
(

Kϕϕ Kϕz

Kzϕ Kzz

)
=

(−a 0
0 0

)
. (3.29)

From Eq. (3.23), γ i j = diag(a−2, 1), so that the trace of K is

K = −1

a
. (3.30)
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Fig. 3.4 Sphere Σ as a hypersurface of the Euclidean space R
3. Notice that the unit normal vector

n changes its direction when displaced on Σ. This shows that the extrinsic curvature of Σ does
not vanish. Moreover all directions being equivalent at the surface of the sphere, K is necessarily
proportional to the induced metric γ , as found by the explicit calculation leading to Eq. (3.36).
Besides, the sum of angles of any triangle lying in Σ is α + β + γ > π, which shows that the
intrinsic curvature of (Σ, γ ) does not vanish either

Example 3.3 A sphere in R
3

Our final simple example is constituted by the sphere of radius a (cf. Fig. 3.4),
the equation of which is t := r −a = 0, with r = √

x2 + y2 + z2. Introducing
the spherical coordinates (xα) = (r, θ, ϕ) such that x = r sin θ cos ϕ, y =
r sin θ sin ϕ and z = r cos θ, (xi ) = (θ, ϕ) constitutes a coordinate system
on Σ. The components of the induced metric γ in this coordinate system are
given by

γi j dxi dx j = a2
(

dθ2 + sin2 θdϕ2
)

. (3.31)

Contrary to the previous two examples, this metric is not flat: the Ricci scalar,
Ricci tensor and Riemann tensor of (Σ, γ ) are respectively (cf. Appendix B
for the computation)

R = 2

a2 , Ri j = 1

a2 γi j , Ri
jkl = 1

a2

(
δi

kγ jl − δi
lγ jk

)
. (3.32)

The non vanishing of the Riemann tensor is reflected by the well-known prop-
erty that the sum of angles of any triangle drawn at the surface of a sphere is
larger than π (cf. Fig. 3.4).

The unit vector n normal to Σ (and oriented towards the exterior of the
sphere) has the following components with respect to the coordinates (Xα) =
(x, y, z):
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nα =
( x

a
,

y

a
,

z

a

)
. (3.33)

Within the Cartesian coordinates (Xα) = (x, y, z), we have ∇βnα =
∂nα/∂ Xβ, hence ∇βnα = a−1δα

β and

∇βnα = 1

a
gαβ. (3.34)

From Eq. (3.20) the components of the extrinsic curvature tensor in the basis
(∂θ , ∂ϕ) associated with the coordinates (xi ) = (θ, ϕ) on Σ are given by

Ki j = K (∂ i , ∂ j ) = −∇βnα(∂i )
α(∂ j )

β = −1

a
gαβ(∂i )

α(∂ j )
β = −1

a
g(∂ i , ∂ j ).

Since ∂ i is tangent to Σ, g(∂ i , ∂ j ) = γ (∂ i , ∂ j ) from the very definition of γ

[Eq. (3.9)]. Hence we conclude that

K = −1

a
γ . (3.35)

Explicitly

Ki j =
(

Kθθ Kθϕ

Kϕθ Kϕϕ

)
=

(−a 0
0 −a sin2 θ

)
. (3.36)

The trace of K with respect to γ is then

K = −2

a
. (3.37)

With these examples, we have encountered hypersurfaces with intrinsic and extrin-
sic curvature both vanishing (the plane), the intrinsic curvature vanishing but not the
extrinsic one (the cylinder), and with both curvatures non vanishing (the sphere).
As we shall see in Sect. 3.5, the extrinsic curvature is not fully independent from the
intrinsic one: they are related by the Gauss equation.

3.3.6 An Example in Minkowski Spacetime: The Hyperbolic
Space H

3

The examples presented above are not directly connected to general relativity for
the ambient manifold (M , g) is Riemannian (Euclidean space) and not Lorentzian.
Here we provide a more relevant example, where (M , g) is the simplest spacetime
that one may think of: Minkowski spacetime. A trivial example of hypersurface of
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Fig. 3.5 Hyperbolic 3-space
H

3 as a hypersurface Σ

embedded in Minkowski
space. The dimension along
z is suppressed

this spacetime is of course a hyperplane, both the intrinsic and extrinsic curvature of
which are zero, as for the plane in Euclidean space (Example 3.1). A more instructive
example is provided by a hyperbolic 3-space.

Example 3.4 Hyperbolic 3-space in Minkowski spacetime (M , g) being
Minkowski spacetime, let (Xα) = (w, x, y, z) be Minkowskian coordinates,
i.e. coordinates such that gαβ = diag(−1, 1, 1, 1), and b > 0 some constant
having the dimension of a length. Let us consider the hypersurface Σ defined
by the equation

Σ : t := w −
√

b2 + x2 + y2 + z2 = 0. (3.38)

Σ is the upper sheet of a two-sheeted 3-dimensional hyperboloid. Indeed
Eq. (3.38) implies

x2 + y2 + z2 − w2 = −b2. (3.39)

b being constant, we recognize the equation of the two-sheeted 3-dimensional
hyperboloid oriented along the w axis, with summits (b, 0, 0, 0) and
(−b, 0, 0, 0). Σ represents only the upper sheet of this hyperboloid (cf.
Fig. 3.5), i.e. the sheet with w > 0, the lower sheet would correspond to
w + √

b2 + x2 + y2 + z2 = 0 instead of (3.38). In view of (3.39) and the
identity sinh2 ρ − cosh2 ρ = −1, it is natural to introduce a coordinate ρ such
that b sinh ρ = √

x2 + y2 + z2 and b cosh ρ = w. Let us supplement ρ with
two other coordinates (θ, ϕ) such that

ρ ∈ [0,+∞), θ ∈ [0, π ], ϕ ∈ [0, 2π), (3.40)

Σ :

⎧⎪⎪⎨
⎪⎪⎩

x = bsinh ρsinθ cosϕ
y = bsinh ρsinθ sinϕ

z = bsinh ρ cos θ

w = bcoshρ.

(3.41)
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By construction, (xi ) = (ρ, θ, ϕ) constitutes a coordinate system on Σ and
(3.41) is nothing but the parametric equation of Σ as an hypersurface of M .

The metric γ induced on Σ by the Minkowski metric g is obtained via the
identity (3.9) applied to two elementary displacement vectors tangent to Σ :

γi j dxi dy j = (
gμvdXμdXv)∣∣

Σ
=

(
−dw2 + dx2 + dy2 + dz2

)∣∣∣
Σ

.

Noticing that, on Σ, dw2 = b2 sinh2 ρdρ2 and

dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2 θdϕ2)

= b2 cosh2 ρdρ2 + b2 sinh2 ρ(dθ2 + sin2 θdϕ2), (3.42)

with r := √
x2 + y2 + z2 = b sinh ρ, we obtain

γi j dxi dy j = b2
[
dρ2 + sinh2 ρ(dθ2 + sin2 θdϕ2)

]
. (3.43)

It is clear from the above expression that the metric γ is Riemannian (i.e.
definite positive). In other words, Σ is a spacelike hypersurface.

The scalar curvature, Ricci tensor and Riemann tensor of (Σ, γ ) are respec-
tively (cf. Appendix B for the computation)

R = − 6

b2 , Ri j = − 2

b2 γi j , Ri
jkl = − 1

b2

(
δi

kγ jl − δi
lγ jk

)
. (3.44)

Note that, contrary to the sphere (Example 3.3), the scalar curvature is nega-
tive. Note also that the Riemann tensor has the same simple structure than
that of the sphere [Eq. (3.32)]. Actually this structure is common to all
maximally symmetric spaces (cf. e.g. Sect. 3.9 of Ref. [2]), i.e. the spaces
having the maximum number of independent continuous symmetries, which is
N = n(n + 1)/2, n being the dimension of the space. A maximally symmetric
space has necessarily a constant curvature (R = −6/b2 here). In dimension
n = 3, there are only three types of maximally symmetric spaces: (i) the hyper-
plane R

3 (R = 0), (ii) the hypersphere S
3 (R > 0) and (iii) the hyperbolic

3-space H
3 (R < 0). The latter is precisely the case in which we are here and

we may say that (Σ, γ ) is a concrete realization of H
3.

From Eq. (3.38), the gradient of the scalar field t defining Σ is

∇αt =
(

1,− x

w
,− y

w
,− z

w

)
= − 1

w
(−w, x, y, z).
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Note that the above expression gives the components with respect to the
Minkowskian coordinates (Xα) = (w, x, y, z) and is valid on Σ only, for we
have used Eq. (3.38) to let appear w. From ∇t, we get the unit normal via
Eq. (3.11):

nα = 1

b
(w, x, y, z). (3.45)

From this expression, we have immediately n · n = b−2(−w2 + x2 + y2 + z2).

Therefore, in view of (3.39), we check that n · n = −1 on Σ. Note however
that if we use expression (3.45) to extend n outside Σ, we can no longer
guarantee that n is a unit vector. Within the Minkowskian coordinates (Xα) =
(w, x, y, z), we have ∇βnα = ∂nα/∂ Xβ, so that we deduce immediately from
the above expression that ∇βnα = b−1δα

β . Hence

∇βnα = 1

b
gαβ. (3.46)

From Eq. (3.20), we have, for any couple of vectors (u, v) tangent to Σ,

K (u, v) = −u · ∇vn = −1

b
g(u, v) = −1

b
γ (u, v),

where the last equality follows from (3.9). Hence we conclude that

K = −1

b
γ . (3.47)

In particular, the trace of K , K = γ i j Ki j , is

K = −3

b
. (3.48)

Note that it is constant.

3.4 Spacelike Hypersurfaces

From now on, we focus on spacelike hypersurfaces, i.e. hypersurfaces Σ such that
the induced metric γ is definite positive (Riemannian), or equivalently such that the
unit normal vector n is timelike (cf. Sects. 3.3.1 and Sects. 3.3.2). Indeed these are
the hypersurfaces involved in the 3+1 formalism.
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3.4.1 The Orthogonal Projector

At each point p ∈ Σ, the space of all spacetime vectors can be orthogonally decom-
posed as

Tp(M ) = Tp(Σ) ⊕ span(n) , (3.49)

where span(n) stands for the 1-dimensional subspace of Tp(M ) generated by the
vector n.

Remark 3.5 The orthogonal decomposition (3.49) holds for spacelike and timelike
hypersurfaces, but not for the null ones. Indeed for any normal n to a null hypersurface
Σ, span(n) ⊂ Tp(Σ).

The orthogonal projector onto Σ is the operator −→
γ associated with the decompo-

sition (3.49) according to

−→
γ : Tp(M ) −→ Tp(Σ)

v �−→ v + (n · v)n.
(3.50)

In particular, as a direct consequence of n · n = −1,
−→
γ satisfies

−→
γ (n) = 0. (3.51)

Besides, it reduces to the identity operator for any vector tangent to Σ :
∀v ∈ Tp(Σ),

−→
γ (v) = v. (3.52)

According to Eq. (3.50), the components of −→
γ with respect to any basis (eα) of

Tp(M ) are

γ α
β = δα

β + nαnβ. (3.53)

We have noticed in Sect. 3.3.1 that the embedding Φ of Σ in M induces a mapping
Tp(Σ) → Tp(M ) (push-forward) and a mapping T ∗

p (M ) → T ∗
p (Σ) (pull-back),

but does not provide any mapping in the reverse ways, i.e. from Tp(M ) to Tp(Σ)

and from T ∗
p (Σ) to T ∗

p (M ). The orthogonal projector naturally provides these
reverse mappings: from its very definition, it is a mapping Tp(M ) → Tp(Σ) and
we can construct from it a mapping −→

γ ∗
M : T ∗

p (Σ) → T ∗
p (M ) by setting, for any

linear form ω ∈ T ∗
p (Σ),

−→
γ ∗

Mω : Tp(M ) −→ R

v �−→ 〈ω,
−→
γ (v)〉. (3.54)

This clearly defines a linear form belonging to T ∗
p (M ). Obviously, we can extend

the operation −→
γ ∗

M to any multilinear form A acting on Tp(Σ), by setting
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−→
γ ∗

M A : Tp(M )n −→ R

(v1, . . . , vn) �−→ A
(−→
γ (v1), . . . ,

−→
γ (vn)

)
.

(3.55)

Let us apply this definition to the bilinear form on Σ constituted by the induced
metric γ : −→γ ∗

Mγ is then a bilinear form on M , which coincides with γ if its two
arguments are vectors tangent to Σ and which gives zero if any of its argument is a
vector orthogonal to Σ, i.e. parallel to n. Since it constitutes an “extension” of γ to
all vectors in Tp(M ), we shall denote it by the same symbol:

γ := −→
γ ∗

Mγ . (3.56)

This extended γ can be expressed in terms of the metric tensor g and the linear form
n− dual to the normal vector n according to

γ = g + n− ⊗ n− . (3.57)

In components:

γαβ = gαβ + nαnβ. (3.58)

Indeed, if v and u are vectors both tangent to Σ, γ (u, v) = g(u, v)+
〈n−, u〉〈n−, v〉 = g(u, v) + 0 = g(u, v), and if u = λn, then, for any v ∈ Tp(M ),

γ (u, v) = λg(n, v) + λ〈n−, n〉〈n−, v〉 = λ[g(n, v) − 〈n−, v〉] = 0. This establishes

Eq. (3.57).

Remark 3.6 Comparing Eq. (3.58) with Eq. (3.53) justifies the notation −→
γ employed

for the orthogonal projector onto Σ, according to the convention set in Sect. 2.3.3
[see Eq. (2.39)]: −→

γ is nothing but the “extended” induced metric γ with the first
index raised by the metric g.

Similarly, we may use the −→
γ ∗

M operation to extend the extrinsic curvature tensor
K, defined a priori as a bilinear form on Σ [Eq. (3.19)], to a bilinear form on M ,

and we shall use the same symbol to denote this extension:

K := −→
γ ∗

M K . (3.59)

Remark 3.7 In this book, we will very often use such a “four-dimensional point
of view”, i.e. we shall treat tensor fields defined on Σ as if they were defined on
M . For covariant tensors (multilinear forms), if not mentioned explicitly, the four-
dimensional extension is performed via the −→

γ ∗
M operator, as above for γ and K . For

contravariant tensors, the identification is provided by the push-forward mapping Φ∗
discussed in Sect. 3.3.1. This four-dimensional point of view has been advocated by
Carter [8–10] and results in easier manipulations of tensors defined in Σ, by treating
them as ordinary tensors on M . In particular this avoids the introduction of special
coordinate systems and complicated notations.



46 3 Geometry of Hypersurfaces

In addition to the extension of three dimensional tensors to four dimensional ones,
we use the orthogonal projector −→

γ to define an “orthogonal projection operation”

for all tensors on M in the following way. Given a tensor T of type
(

p
q

)
on M , we

denote by −→
γ ∗T another tensor on M , of the same type and whose components in

any basis (eα) of Tp(M ) are deduced from those of T by contracting with γ α
β on

all indices:

(
−→
γ ∗T )

α1...αp
β1...βq

= γ α1
μ1

. . . γ αp
μp

γ v1
β1

. . . γ vq
βq

T μ1...μp
v1...vq . (3.60)

Notice that for any multilinear form A on Σ,
−→
γ ∗(−→γ ∗

M A) = −→
γ ∗

M A, for a vector
v ∈ Tp(M ),

−→
γ ∗v = −→

γ (v), for a linear form ω ∈ T ∗
p (M ),

−→
γ ∗ω = ω ◦ −→

γ , and
for any tensor T ,

−→
γ ∗T is tangent toΣ, in the sense that −→

γ ∗T results in zero if one
of its arguments is n or n−.

3.4.2 Relation Between K and ∇n

A priori the unit vector n normal to Σ is defined only at points belonging to Σ. Let
us consider some extension of n in an open neighbourhood of Σ. If Σ is a level
surface of some scalar field t, such a natural extension is provided by the gradient
of t, according to Eq. (3.11). Then the tensor fields ∇n and ∇n− are well defined

quantities. In particular, we can introduce the vector

a := ∇nn. (3.61)

Since n is a timelike unit vector, it can be regarded as the 4-velocity of some observer,
and a is then the corresponding 4-acceleration. a is orthogonal to n and hence tangent
to Σ, since n · a = n · ∇nn = 1/2∇n(n · n) = 1/2∇n(−1) = 0.

Let us make explicit the definition of the tensor K extended to M by Eq. (3.59).
From the definition of the operator −→

γ ∗
M [Eq. (3.55)] and the original definition of

K [Eq. (3.20)], we have

∀(u, v) ∈ Tp(M )2, K (u, v) = K (
−→
γ (u),

−→
γ (v)) = −−→

γ (u) · ∇−→
γ (v)n

= −−→
γ (u) · ∇v+(n·v)nn

= −[u + (n · u)n] · [∇vn + (n · v)∇nn]
= −u · ∇vn − (n · v)u · ∇nn︸︷︷︸

a

−(n · u) n · ∇vn︸ ︷︷ ︸
0

− (n · u)(n · v) n · ∇nn︸ ︷︷ ︸
0

= −u · ∇vn − (a · u)(n · v),

= −∇n−(u, v) − 〈a−, u〉〈n−, v〉, (3.62)

where we have used the fact that n · n = −1 to set n · ∇xn = 0 for any vector x.

Since Eq. (3.62) is valid for any pair of vectors (u, v) in Tp(M ), we conclude that
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∇n− = −K − a− ⊗ n− . (3.63)

In components:

∇βnα = −Kαβ − aαnβ . (3.64)

Notice that Eq. (3.63) implies that the (extended) extrinsic curvature tensor is nothing
but the gradient of the 1-form n− to which the projector operator −→

γ ∗ is applied:

K = −−→
γ ∗∇n− . (3.65)

Remark 3.8 Whereas the bilinear form ∇n− is a priori not symmetric, its projected

part, −K , is a symmetric bilinear form.

Taking the trace of Eq. (3.63) with respect to the metric g (i.e. contracting
Eq. (3.64) with gαβ) yields a simple relation between the divergence of the vector n
and the trace of the extrinsic curvature tensor:

K = −∇ · n . (3.66)

3.4.3 Links Between the ∇ and D Connections

Given a tensor field T on Σ, its covariant derivative DT with respect to the Levi–
Civita connection D of the metric γ (cf. Sect. 3.3.3) is expressible in terms of the
covariant derivative ∇T with respect to the spacetime connection ∇ according to the
formula

DT = −→
γ ∗∇T , (3.67)

the component version of which is [cf. Eq. (3.60)]:

DρT α1...αp
β1...βq = γ α1

μ1
· · · γ αp

μp
γ v1

β1
· · · γ vq

βq
γ σ

ρ∇σ T μ1...μp v1...vq . (3.68)

Before proceeding to the demonstration of this formula, some comments are appro-
priate: first of all, the T in the right-hand side of Eq. (3.67) should be the four-
dimensional extension −→

γ ∗
M T provided by Eq. (3.55), for ∇ acts on tensors on M .

Following the remark made above, we write T instead of −→
γ ∗

M T . Similarly the right-
hand side should write −→

γ ∗
M DT , so that Eq. (3.67) is a equality between tensors on

M . Therefore the rigorous version of Eq. (3.67) is

−→
γ ∗

M DT = −→
γ ∗[∇(

−→
γ ∗

M T )]. (3.69)
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Besides, even if T := −→
γ ∗

M T is a four-dimensional tensor, its support (domain of
definition) remains the hypersurface Σ. In order to define the covariant derivative
∇T, the support must be an open set of M , which Σ is not. Accordingly, one must
first construct some extension T ′ of T in an open neighbourhood of Σ in M and
then compute ∇T ′. The key point is that thanks to the operator −→

γ ∗ acting on ∇T ′,
the result does not depend of the choice of the extension T ′, provided that T ′ = T
at every point in Σ.

The demonstration of formula (3.67) takes two steps. First, one can show easily
that −→γ ∗∇ (or more precisely the pull-back of −→

γ ∗∇−→
γ ∗

M) is a torsion-free connection
on Σ, for it satisfies all the defining properties of a connection (linearity, reduction to
the gradient for a scalar field, commutation with contractions and Leibniz’ rule) and
its torsion vanishes. Secondly, this connection vanishes when applied to the metric
tensor γ: indeed, using Eqs. (3.60) and (3.58),

(−→
γ ∗∇γ

)
αβγ

= γ μ
αγ v

βγ ρ
γ ∇ ργ μv

= γ μ
αγ v

βγ ρ
γ (∇ρgμv︸ ︷︷ ︸

0

+∇ρnμnv + nμ∇ρnv)

= γ ρ
γ (γ μ

α γ v
βnv︸ ︷︷ ︸
0

∇ρnμ + γ μ
αnμ︸ ︷︷ ︸
0

∇ρnv)

= 0.

Invoking the uniqueness of the torsion-free connection associated with a given
non-degenerate metric (the Levi–Civita connection), we conclude that necessarily−→
γ ∗∇ = D.

One can deduce from Eq. (3.67) an interesting formula about the derivative of
a vector field v along another vector field u, when both vectors are tangent to Σ.

Indeed, from Eq. (3.67),

(Duv)α = uσ Dσ vα = uσ γ v
σ︸ ︷︷ ︸

uv

γ α
μ∇vvμ = uv (

δα
μ + nαnμ

) ∇vvμ

= uv∇vvα + nαuv nμ∇vvμ

︸ ︷︷ ︸
−vμ∇vnμ

= uv∇vvα − nαuvvμ∇vnμ,

where we have used nμvμ = 0 (v being tangent to Σ) to write nμ∇vvμ = −vμ∇vnμ.

Now, from Eq. (3.20) and the symmetry of K, uvvμ∇vnμ = −K (v, u) = −K (u, v),
so that the above formula becomes

∀(u, v) ∈ T (Σ) × T (Σ), Duv = ∇uv + K (u, v)n . (3.70)

This equation provides another interpretation of the extrinsic curvature tensor K: K
measures the deviation of the derivative of any vector of Σ along another vector of
Σ, taken with the intrinsic connection D of Σ from the derivative taken with the
spacetime connection ∇. Notice from Eq. (3.70) that this deviation is always in the
direction of the normal vector n.
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Fig. 3.6 In the Euclidean space R
3, the plane Σ is a totally geodesic hypersurface, for the geodesic

between two points A and B within (Σ, γ ) (solid line) coincides with the geodesic in the ambient
space (dashed line). On the contrary, for the sphere, the two geodesics are distinct, whatever the
position of points A and B

Consider a geodesic curve L in (Σ, γ ) and the tangent vector u associated
with some affine parametrization of L . Then Duu = 0 and Eq. (3.70) leads to
∇uu = −K (u, u)n. If L were a geodesic of (M , g), one should have ∇uu = κu,

for some non-affinity parameter κ. Since u is never parallel to n, we conclude that
the extrinsic curvature tensor K measures the failure of a geodesic of (Σ, γ ) to
be a geodesic of (M , g). Only in the case where K vanishes, the two notions of
geodesics coincide. For this reason, hypersurfaces for which K = 0 are called
totally geodesic hypersurfaces.

Example 3.5 The plane in the Euclidean space R
3 discussed as Example 3.1

in Sect. 3.3.5 is a totally geodesic hypersurface: K = 0. This is obvious since
the geodesics of the plane are straight lines, which are also geodesics of R

3

(cf. Fig. 3.6). A counter-example is provided by the sphere embedded in R
3

(Example 3.3 in Sect. 3.3.5): given two points A and B, the geodesic curve
with respect to (Σ, γ ) joining them is a portion of a sphere’s great circle,
whereas from the point of view of R

3, the geodesic from A to B is a straight
line (cf. Fig. 3.6). The same things holds with the cylinder (Example 3.2): the
geodesics on the cylinder are helices, which differ from the straight lines of
R

3 (except for the special case where points A and B are vertically aligned: the
helix degenerates into a straight line).

3.5 Gauss–Codazzi Relations

We derive here equations that will constitute the basis of the 3+1 formalism for
general relativity. They are decompositions of the spacetime Riemann tensor, 4Riem
[Eq. (2.67) with Riem → 4Riem], in terms of quantities relative to the spacelike
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hypersurface Σ, namely the Riemann tensor associated with the induced metric
γ , Riem [Eq. (3.15)] and the extrinsic curvature tensor of Σ, K.

3.5.1 Gauss Relation

Let us consider the Ricci identity (3.15) defining the (three-dimensional) Riemann
tensor Riem as measuring the lack of commutation of two successive covariant
derivatives with respect to the connection D associated with Σ’s metric γ. The
4-dimensional version of this identity is

Dα Dβvγ − Dβ Dαvγ = Rγ
μαβvμ, (3.71)

where v is a generic vector field tangent to Σ. Let us use formula (3.68) which relates
the D-derivative to the ∇-derivative, to write

Dα Dβvγ = Dα(Dβvγ ) = γ μ
αγ v

βγ γ
ρ∇μ(Dvvρ).

Using again formula (3.68) to express Dvvρ yields

Dα Dβvγ = γ μ
αγ v

βγ γ
ρ∇μ

(
γ σ

vγ
ρ

λ∇σ vλ
)
.

Let us expand this formula by making use of Eq. (3.53) to replace ∇μγ σ
v by ∇μnσ nv+

nσ ∇μnv. Since γ v
β nv = 0, we get

Dα Dβvγ = γ μ
αγ v

βγ γ
ρ

(
nσ ∇μnvγ

ρ
λ∇σ vλ + γ σ

v∇μnρ nλ∇σ vλ

︸ ︷︷ ︸
−vλ∇σ nλ

+γ σ
vγ

ρ
λ∇μ∇σ vλ

)

= γ μ
αγ v

βγ γ
λ∇μnvnσ ∇σ vλ − γ μ

αγ σ
βγ γ

ρvλ∇μnρ∇σ nλ + γ μ
αγ σ

βγ γ
λ∇μ∇σ vλ

= −Kαβγ γ
λnσ ∇σ vλ − K γ

α Kβλvλ + γ μ
αγ σ

βγ γ
λ∇μ∇σ vλ, (3.72)

where we have used the idempotence of the projection operator −→γ , i.e. γ
γ
ργ

ρ
λ =

γ γ
λ to get the second line and γ μ

αγ v
β∇μnv = −Kβα [Eq. (3.65)] to get the third

one. When we permute the indices α and β and subtract from Eq. (3.72) to form
Dα Dβvγ − Dβ Dγ vγ , the first term vanishes since Kαβ is symmetric in (α, β).

There remains

Dα Dβvγ − Dβ Dγ vγ =
(

KαμK γ
β − KβμK γ

α

)
vμ + γ

ρ
αγ σ

βγ γ
λ

(
∇ρ∇σ vλ − ∇σ ∇ρvλ

)
.

Now the Ricci identity (2.68) for the connection ∇ gives ∇ρ∇σ vλ − ∇σ ∇ρvλ =
4Rλ

μρσ vμ. Therefore

Dα Dβvγ − Dβ Dγ vγ = (
KαμK γ

β − KβμK γ
α

)
vμ + γ ρ

αγ σ
βγ

γ
λ

4Rλ
μρσ vμ.
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Substituting this relation for the left-hand side of Eq. (3.71) results in

(
KαμK γ

β − KβμK γ
α

)
vμ + γ ρ

αγ σ
βγ γ

λ
4Rλ

μρσ vμ = Rγ
μαβvμ,

or equivalently, since vμ = γ
μ
σ vσ ,

γ μ
αγ v

βγ γ
ργ σ

λ
4Rρ

σμvvλ = Rγ
λαβvλ + (

K γ
α Kλβ − K γ

β Kαλ

)
vλ.

In this identity, v can be replaced by any vector of T (M ) without changing the
results, thanks to the presence of the projector operator −→

γ and to the fact that both
K and Riem are tangent to Σ. Therefore we conclude that

γ μ
αγ v

βγ γ
ργ σ

δ
4Rρ

σμv = Rγ
δαβ + K γ

α K δβ − K γ
β K αδ . (3.73)

This is the Gauss relation.
If we contract the Gauss relation on the indices γ and α and use γ μ

αγ α
ρ =

γ μ
ρ = δμ

ρ + nμnρ, we obtain an expression that lets appear the Ricci tensors 4R
and R associated with g and γ respectively:

γ μ
αγ v

β
4Rμv + γαμnvγ ρ

βnσ 4Rμ
vρσ = Rαβ + K K αβ − KαμK μ

β . (3.74)

This equation is naturally called the contracted Gauss relation. Let us take its trace
with respect to γ, taking into account that K μ

μ = K i
i = K , Kμv K μv = Ki j K i j and

γ αβγαμnvγ ρ
βnσ 4Rμ

vρσ = γ ρ
μnvnσ 4Rμ

vρσ = 4Rμ
vμσ︸ ︷︷ ︸

4Rvσ

nvnσ + 4Rμ
vρσnρnμnvnσ

︸ ︷︷ ︸
0

= 4Rμvnμnv.

We obtain

4R + 24Rμvnμnv = R + K 2 − Ki j K i j . (3.75)

This equation is called the scalar Gauss relation . It constitutes a generalization of
Gauss’ famous Theorema Egregium (remarkable theorem) [11, 12]. It relates the
intrinsic curvature of Σ, represented by the Ricci scalar R, to its extrinsic curvature,
represented by K 2−Ki j K i j . Actually, the original version of Gauss’ theorem was for
two-dimensional surfaces embedded in the Euclidean space R

3. Since the curvature
of the latter is zero, the left-hand side of Eq. (3.75) vanishes identically in this case.
Moreover, the metric g of the Euclidean space R

3 is Riemannian, not Lorentzian.
Consequently the term K 2−Ki j K i j has the opposite sign, so that Eq. (3.75) becomes

R − K 2 + Ki j K i j = 0 (g Euclidean). (3.76)
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This change of sign stems from the fact that for a Riemannian ambient metric, the
unit normal vector n is spacelike and the orthogonal projector is γ α

β = δα
β −

nαnβ instead of γ α
β = δα

β + nαnβ [the latter form has been used explicitly in
the calculation leading to Eq. (3.72)]. Moreover, in dimension 2, formula (1) can be
simplified by letting appear the principal curvatures κ1 and κ2 of Σ (cf. Sect. 3.3.4).
Indeed, K can be diagonalized in an orthonormal basis (with respect to γ ) so that
Ki j = diag(κ1, κ2) and K i j = diag(κ1, κ2). Consequently, K = κ1 + κ2 and
Ki j K i j = κ2

1 + κ2
2 and Eq. (3.75) becomes

R = 2κ1κ2 (g Euclidean,Σ dimension 2). (3.77)

Example 3.6 We may check the Theorema Egregium (3.76) for the examples
of Sect. 3.3.5. It is trivial for the plane, since each term vanishes separately.
For the cylinder of radius a, R = 0, K = −1/a [Eq. (3.30)], Ki j K i j = 1/a2

[Eq. (3.29)], so that Eq. (3.76) is satisfied. For the sphere of radius a, R = 2/a2

[Eq. (3.32)], K = −2/a [Eq. (3.37)], Ki j K i j = 2/a2 [Eq. (3.36)], so that
Eq. (3.76) is satisfied as well.

Example 3.7 Let us check the 4-dimensional scalar Gauss relation (3.75) on
the case of the hyperbolic 3-space embedded in Minkowski spacetime (Exam-
ple 3.4). Since Minkowski spacetime is flat, 4R = 0, 4Rμv = 0 and the left-
hand side of Eq. (3.75) identically vanishes. On the right-hand side, R = −6/b2

[Eq. (3.44)], K 2 = 9/b2 [Eq. (3.48)] and Ki j K i j = γi jγ
i j/b2 = 3/b2

[Eq. (3.47)]. Thus Eq. (3.75) is satisfied.

3.5.2 Codazzi Relation

Let us at present apply the Ricci identity (2.68) to the normal vector n (or more
precisely to any extension of n around Σ, cf. Sect. 3.4.2):

(∇α∇β − ∇β∇α

)
nγ = 4Rγ

μαβnμ. (3.78)

If we project this relation onto Σ, we get

γ μ
αγ v

βγ γ
ρ

4Rρ
σμvnσ = γ μ

αγ v
βγ γ

ρ

(∇μ∇vnρ − ∇v∇μnρ
)
. (3.79)

Now, from Eq. (3.64),
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γ μ
αγ v

βγ γ
ρ∇μ∇vnρ = γ μ

αγ v
βγ γ

ρ∇μ

(−K ρ
v − aρnv

)

= −γ μ
αγ v

βγ γ
ρ

(∇μK ρ
v + ∇μaρnv + aρ∇μnv

)

= −Dα K γ
β + aγ Kαβ, (3.80)

where we have used Eq. (3.68), as well as γ v
β nv = 0, γ

γ
ρ aρ = aγ , and γ

μ
α γ v

β∇μnv =
−Kαβ to get the last line. After permutation of the indices α and β and subtraction
from Eq. (3.80), taking into account the symmetry of Kαβ, we see that Eq. (3.79)
becomes

γ
γ
ρ nσ γ

μ
α γ v

β
4Rρ

σμv = Dβ K γ
α − Dα K γ

β . (3.81)

This is the Codazzi relation, also called Codazzi–Mainardi relation in the mathe-
matical literature [11].

Remark 3.9 Thanks to the symmetries of the Riemann tensor (cf. Sect. 2.4.3),
changing the index contracted with n in Eq. (3.81) (for instance considering nργ γσ

γ μ
αγ v

β
4Rρ

σμv or γ γ
ργ σ

αnμγ v
β

4 Rρ
σμv) would not give an independent relation:

at most it would result in a change of sign of the right-hand side.

Contracting the Codazzi relation on the indices α and γ yields to

γ μ
ρnσ γ v

β
4Rρ

σμv = Dβ K − DμK μ
β,

with γ
μ
ρnσ γ v

β
4Rρ

σμv = (δ
μ
ρ +nμnρ)nσ γ v

β
4Rρ

σμv = nσ γ v
β

4Rσv +γ v
β

4Rρ
σμvnρnσ nμ.

Now, from the antisymmetry of the Riemann tensor with respect to its first two indices
[Eq. (2.73)], the last term vanishes, so that one is left with

γ μ
αnv4Rμv = Dα K − DμK μ

α . (3.82)

We shall call this equation the contracted Codazzi relation.

Example 3.8 The Codazzi relation is trivially satisfied by the three examples
of Sect. 3.3.5 because the Riemann tensor vanishes for the Euclidean space R

3

and for each of the considered surfaces, either K = 0 (plane) or K is constant
on Σ, in the sense that DK = 0.

Example 3.9 Regarding the hyperbolic 3-space in Minkowski spacetime
(Example 3.4), the Codazzi relation (3.81) is satisfied because 4Rρ

σμv = 0
(flat spacetime) and, from Eqs. (3.47) and (3.14), DK = −D(b−1γ ) =
−b−1 Dγ = 0.
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Chapter 4
Geometry of Foliations

Abstract Whereas the previous chapter focused on a single hypersurface Σ embed-
ded in the spacetime (M , g), we consider here a continuous set of hypersurfaces
(Σt)t∈R that covers the manifold M . We introduce the concepts of lapse function,
normal evolution vector and Eulerian observer. We consider the evolution of the
3-metric along the normal to the slices Σt and we compute the last part of the 3+1
decomposition of the Riemann tensor, complementary to the Gauss and Codazzi
equations obtained in Chap. 3.

4.1 Introduction

As already mentioned, the 3+1 formalism for general relativity is based on a foliation
of spacetime by a 1-parameter family of spacelike hypersurfaces. This is possible for
a wide class of spacetimes, the so-called globally hyperbolic spacetimes, which we
introduce in Sect. 4.2. Actually this class covers most of the spacetimes of astrophys-
ical or cosmological interest. Again the title of this chapter is “Geometry...”, since
as in Chap. 3, all the results are independent of the Einstein equation. All the results
are also independent on the choice of coordinates (xi) in each slice of the foliation.

4.2 Globally Hyperbolic Spacetimes and Foliations

4.2.1 Globally Hyperbolic Spacetimes

A Cauchy surface is a spacelike hypersurface Σ in M such that each causal (i.e.
timelike or null) curve without end point intersects Σ once and only once [1, 2].
Equivalently, Σ is a Cauchy surface iff its domain of dependence is the whole space-
time M . Not all spacetimes admit a Cauchy surface. For instance spacetimes with

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 55
DOI: 10.1007/978-3-642-24525-1_4, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 4.1 Foliation of the
spacetime M by a family of
spacelike hypersurfaces
(Σt)t∈R

closed timelike curves do not. Other examples are provided in Ref. [3]. A spacetime
(M , g) that admits a Cauchy surface Σ is said to be globally hyperbolic. The name
globally hyperbolic stems from the fact that the scalar wave equation is well posed
in these spacetimes (see e.g. [4]).

The topology of a globally hyperbolic spacetime M is necessarily Σ ×R (where
Σ is the Cauchy surface entering in the definition of global hyperbolicity).

Remark 4.1 The original definition of a globally hyperbolic spacetime, given by
Leray in 1953 [5] is actually more technical that the one given above, but the latter
has been shown to be equivalent to the original one [1] (see e.g. Ref. [4, 6]).

4.2.2 Definition of a Foliation

Any globally hyperbolic spacetime (M , g) can be foliated by a family of spacelike
hypersurfaces (Σt)t∈R. By foliation or slicing, it is meant that there exists a smooth
scalar field t̂ on M , which is regular (in the sense that its gradient never vanishes),
such that each hypersurface is a level surface of this scalar field:

∀t ∈ R, Σt := {
p ∈ M , t̂(p) = t

}
. (4.1)

Since t̂ is regular, the hypersurfaces Σt are non-intersecting:

Σt ∩ Σt′ = ∅ for t �= t′. (4.2)

In the following, we do no longer distinguish between t and t̂, i.e. we skip the hat in
the name of the scalar field. Each hypersurface Σt is called a leaf or a slice of the
foliation. We assume that all Σt’s are spacelike and that the foliation covers M (cf.
Fig. 4.1):
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M =
⋃

t∈R

Σt . (4.3)

4.3 Foliation Kinematics

4.3.1 Lapse Function

As already noticed in Sect. 3.3.2, the timelike and future-directed unit vector n
normal to the slice Σt is necessarily collinear to the vector

−→∇ t associated with the
gradient 1-form ∇t. Hence we may write

n := −N
−→∇ t (4.4)

with

N :=
(
−−→∇ t · −→∇ t

)−1/2 =
(
−〈∇t,

−→∇ t〉
)−1/2

. (4.5)

The minus sign in (4.4) is chosen so that the vector n is future-oriented if the scalar
field t is increasing towards the future. Notice that the value of N ensures that n is a
unit vector:

n · n = −1. (4.6)

The scalar field N hence defined is called the lapse function. The name lapse has
been coined by Wheeler in 1964 [7].

Remark 4.2 In most of the numerical relativity literature, the lapse function is
denoted by the letter α instead of N. We adopt here the same notation as ADM
[8], MTW [9] and Choquet–Bruhat [4].

Notice that by construction [Eq. (4.5)],

N > 0. (4.7)

In particular, the lapse function never vanishes for a regular foliation. Equation (4.4)
also says that −N is the proportionality factor between the gradient 1-form ∇t and
the 1-form n associated to the vector n by the metric duality:

n = −N∇t . (4.8)

4.3.2 Normal Evolution Vector

Let us define the normal evolution vector as the timelike vector normal to Σt such
that
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Fig. 4.2 The point p’
deduced from p ∈ Σt by the
displacement δtm belongs to
Σt+δt, i.e. the hypersurface
Σt is transformed to Σt+δt
by the vector field δtm (Lie
dragging)

m := Nn . (4.9)

Since n is a unit vector, the scalar square of m is

m · m = −N2. (4.10)

Besides, we have

〈∇t, m〉 = N〈∇t, n〉 = N2 (−〈∇t,
−→∇ t〉)︸ ︷︷ ︸

N−2

= 1,

where we have used Eqs. (4.4) and (4.5). Hence

〈∇t, m〉 = ∇mt = mμ∇μt = 1 . (4.11)

This relation means that the normal vector m is “adapted” to the scalar field t, con-
trary to the normal vector n. A geometrical consequence of this property is that the
hypersurface Σt+δt can be obtained from the neighbouring hypersurface Σt by the
small displacement δtm of each point of Σt . Indeed consider some point p in Σt and
displace it by the infinitesimal vector δtm to the point p′ = p + δtm (cf. Fig. 4.2).
From the very definition of the gradient 1-form ∇t, the value of the scalar field t at
p′ is

t(p′) = t(p + δtm) = t(p) + 〈∇t, δtm〉 = t(p) + δt 〈∇t, m〉︸ ︷︷ ︸
1

= t(p) + δt.

This last equality shows that p′ ∈ Σt+δt . Hence the vector δtm carries the hypersur-
face Σt into the neighbouring one Σt+δt . One says equivalently that the hypersurfaces
(Σt) are Lie dragged by the vector m. This justifies the name normal evolution vector
given to m.

An immediate consequence of the Lie dragging of the hypersurfaces Σt by the
vector m is that the Lie derivative along m of any vector tangent to Σt is also a vector
tangent to Σt:

∀v ∈ T (Σt), Lmv ∈ T (Σt) . (4.12)
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Fig. 4.3 Geometrical construction showing that Lmv ∈ T (Σt) for any vector v tangent to the
hypersurface Σt : on Σt, a vector can be identified to a infinitesimal displacement between two
points, p and q say. These points are transported onto the neighbouring hypersurface Σt+δt along the
field lines of the vector field m(thin lines on the figure) by the diffeomorphism Φδt associated with
m: the displacement between p and Φδt(p) is the vector δtm. The couple of points (Φδt(p),Φδt(q))

defines the vector Φδtv(t), which is tangent to Σt+δt since both points Φδt(p) and Φδt(q) belong to
Σt+δt . The Lie derivative of v along m is then defined by the difference between the value of the
vector field v at the point Φδt(p), i.e. v(t + δt), and the vector transported from Σt along m’s field
lines, i.e. Φδtv(t) : Lmv(t + δt) = limδt→0[v(t + δt) − Φδtv(t)]/δt. Since both vectors v(t + δt)
and Φδtv(t) are in T (Σt+δt), it follows then that Lmv(t + δt) ∈ T (Σt+δt)

This is obvious from the geometric definition of the Lie derivative (cf. Sect. 2.5 and
Fig. 4.3).

Example 4.1 Hyperboloidal slicing of Minkowski spacetime Let (M , g)

be the Minkowski spacetime. Given some Minkowskian coordinates (Xα) =
(w, x, y, z), i.e. coordinates such that gαβ = diag(−1, 1, 1, 1), and some
constant b > 0 having the dimension of a length, we consider the foliation
(Σt)t∈R defined by the iso-surfaces of the scalar field

t = w −
√

b2 + x2 + y2 + z2. (4.13)

Each Σt is a copy of the hyperbolic 3-space discussed in Example 3.4, the
latter corresponding to t = 0 (cf. Fig. 4.4). Indeed, Σt is nothing but the image
of Σ0 by the translation w �→ w + t along the w-axis. Note that each Σt, while
remaining spacelike, becomes asymptotic to the future light cone emerging
from the point (w, x, y, z) = (t, 0, 0, 0) as x → ±∞. The components of the
gradient of t with respect to the coordinates (Xα) = (w, x, y, z) are ∇αt =
∂t/∂Xα, i.e.
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∇α t =
(

1,− x
√

b2 + x2 + y2 + z2
,− y

√
b2 + x2 + y2 + z2

,− z
√

b2 + x2 + y2 + z2

)

.

The value of the lapse function is then easily deduced from Eq. (4.5):

N =
[(

∂t

∂w

)2

−
(

∂t

∂x

)2

−
(

∂t

∂y

)2

−
(

∂t

∂z

)2
]−1/2

,

yielding

N =
√

1 + x2 + y2 + z2

b2 . (4.14)

The unit normal to Σt is obtained from Eq. (4.8):

nα = 1

b

(
−

√
b2 + x2 + y2 + z2, x, y, z

)
=

(
−N,

x

b
,

y

b
,

z

b

)
(4.15)

nα = 1

b

(√
b2 + x2 + y2 + z2, x, y, z

)
=

(
N,

x

b
,

y

b
,

z

b

)
. (4.16)

For t = 0, we recover expression (3.45) since in this case√
b2 + x2 + y2 + z2 = w. The vector n is represented at two points A and

B on Σ0 in Fig. 4.4.

4.3.3 Eulerian Observers

Since n is a unit timelike vector, it can be regarded as the 4-velocity of some
observer. We call such observer an Eulerian observer . The worldlines of the Eulerian
observers are thus orthogonal to the hypersurfaces Σt . Physically, this means that
the hypersurface Σt is locally the set of events that are simultaneous from the point
of view of the Eulerian observer, according to Einstein-Poincaré simultaneity con-
vention.

Remark 4.3 The Eulerian observers are sometimes called fiducial observers (e.g.
[10]). In the special case of axisymmetric and stationary spacetimes, they are also
called locally nonrotating observers [11] or zero-angular-momentum observers
(ZAMO) [10].
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Σ Σ

Σ

Σ

Σ

Σ

Fig. 4.4 Slicing of Minkowski spacetime by a family (Σt)t∈R of hypersurfaces isometric to the
hyperbolic space H

3. Σ0 is the same hypersurface as that depicted in Fig. 3.5, with the dimension
along y suppressed

Let us consider two close events p and p′ on the worldline of some Eulerian observer.
Let t be the “coordinate time” of the event p and t + δt (δt > 0) that of p′, in the
sense that p ∈ Σt and p′ ∈ Σt+δt . Then p′ = p + δtm, as above. The proper time
δτ between the events p and p′, as measured the Eulerian observer, is given by the
metric length of the vector linking p and p′:

δτ = √−g(δtm, δtm) = √−g(m, m) δt.

Since g(m, m) = −N2 [Eq. (4.10)] and N > 0 [Eq. (4.7)], we get

δτ = Nδt . (4.17)

This equality justifies the name lapse function given to N: N relates the “coordinate
time” t labelling the leaves of the foliation to the physical time τ measured by the
Eulerian observer.

The 4-acceleration of the Eulerian observer is the covariant derivative of the
4-velocity n along itself:

a = ∇nn. (4.18)

As already noticed in Sect. 3.4.2, the vector a is orthogonal to n and hence tangent
to Σt . Moreover, it can be expressed in terms of the spatial gradient of the lapse
function. Indeed, by means Eq. (4.8), we have
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aα = nμ∇μnα = −nμ∇μ(N∇αt) = −nμ∇μN∇αt − Nnμ ∇μ∇αt
︸ ︷︷ ︸
∇α∇μt

= 1

N
nαnμ∇μN + Nnμ∇α

(
− 1

N
nμ

)
= 1

N
nαnμ∇μN + 1

N
∇αN nμnμ︸ ︷︷ ︸

−1

− nμ∇αnμ︸ ︷︷ ︸
0

= 1

N

(∇αN + nαnμ∇μN
) = 1

N
γ μ
α ∇μN = 1

N
DαN = Dα ln N,

where we have used the torsion-free character of the connection ∇ to write ∇μ∇αt =
∇α∇μt, as well as the expression (3.53) of the orthogonal projector onto Σt,

−→
γ ,

and the relation (3.68) between ∇ and D derivatives. Thus we have

a = D ln N and a = −→
D ln N . (4.19)

Thus, the 4-acceleration of the Eulerian observer appears to be nothing but the gra-
dient within (Σt, γ ) of the logarithm of the lapse function. Notice that since a spatial
gradient is always tangent to Σt, we recover immediately from formula (4.19) that
n · a = 0.

Remark 4.4 Because they are hypersurface-orthogonal, the congruence formed by
all the Eulerian observers’ worldlines has a vanishing vorticity, hence the name
“non-rotating” observer given sometimes to the Eulerian observer (cf. Remark 4.3).

Example 4.2 Let us pursue with Example 4.1. With respect to the
Minkowskian coordinates (Xα) = (w, x, y, z), the components of the covari-
ant derivative of n are ∇βnα = ∂nα/∂Xβ. Using expression (4.15) for nα, we
get (α = row index, β = column index)

∇βnα = 1

b

⎛

⎜
⎜
⎝

0 − x
bN − y

bN − z
bN

0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ . (4.20)

Note that we do not recover Eq. (3.46) for t = 0, since in Example 3.4, the
normal n was extended away from Σ0 in such a way that n · n �= −1. Here,
by construction, the field n obeys n · n = −1 everywhere in M . Hence the
two fields differ outside Σ0. From Eqs. (4.20) and (4.16) we deduce the 4-
acceleration of the Eulerian observer via Eq. (4.18):

aα = 1

b2

(
−x2 + y2 + z2

bN
, x, y, z

)
. (4.21)

We verify, via (4.16), that aμnμ = 0, as it should be. The vector a is represented
at point B in Fig. 4.4; it vanishes at point A.
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From the expression (4.14) of N, we have

∇αN =
(

∂N

∂w
,
∂N

∂x
,
∂N

∂Y
,
∂N

∂z

)
= 1

b2N
(0, x, y, z). (4.22)

Now

DαN = γ μ
α ∇μN = (δμ

α + nμnα)∇μN = ∇αN + nμ∇μNnα.

with nμ∇μN = (x2 +y2 +z2)/(b2N), thanks to Eqs. (4.16) and (4.22). Hence,
using expression (4.15) for nα, we get

Dα ln N = 1

N
DαN = 1

b2

(
−x2 + y2 + z2

bN
, x, y, z

)
.

Comparing with Eq. (4.21) we conclude that formula (4.19) holds.

4.3.4 Gradients of n and m

Substituting Eq. (4.19) for a into Eq. (3.63) leads to the following relation between
the extrinsic curvature tensor, the gradient of n and the spatial gradient of the lapse
function:

∇n = −K − D ln N ⊗ n , (4.23)

or, in components1:

∇βnα = −Kαβ − Dα ln N nβ . (4.24)

The covariant derivative of the normal evolution vector is deduced from ∇m =
∇(Nn) = N∇n + n ⊗ ∇N . We get

∇m = −N
−→
K − −→

D N ⊗ n + n ⊗ ∇N , (4.25)

or, in components:

∇βmα = −NKα
β − DαNnβ + nα∇βN . (4.26)

1 Recall that (∇n)αβ = ∇βnα (cf. Remark 2.11).
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Example 4.3 Let us use expression (4.24) in the form Kαβ = −∇βnα −aα nβ,

along with (4.20), (4.21) and (4.15) to evaluate the extrinsic curvature tensor
for the hyperboloidal slicing considered in Examples 4.1 and 4.2. We find

Kαβ = 1

b3

⎛

⎜
⎜
⎝

−x2 − y2 − z2 xbN ybN zbN
xbN −b2 − x2 −xy −xz
ybN −xy −b2 − y2 −yz
zbN −xz −yz −b2 − z2

⎞

⎟
⎟
⎠ . (4.27)

On the other side, from γαβ = gαβ + nαnβ [Eq. (3.58)] and expression (4.15)
for nα, we have

γαβ = 1

b2

⎛

⎜
⎜
⎝

x2 + y2 + z2 −xbN −ybN −zbN
−xbN b2 + x2 xy xz
−ybN xy b2 + y2 yz
−zbN xz yz b2 + z2

⎞

⎟
⎟
⎠ . (4.28)

Comparing with (4.27), we conclude that, for the considered foliation,

Kαβ = −1

b
γαβ. (4.29)

We thus recover Eq. (3.47) established for Σ0. This is not surprising since
each Σt is the image of Σ0 by the translation w �→ w + t. The latter being
an isometry of Minkowski spacetime, the property (3.47) linking the first and
second fundamental forms of Σ0 must hold for any hypersurface Σt .

4.3.5 Evolution of the 3-Metric

The evolution of Σt’s metric γ is naturally given by the Lie derivative of γ along
the normal evolution vector m (see Sec. 2.5). By means of Eqs. (2.92) and (4.26),
we get

Lmγαβ = mμ∇μγαβ + γμβ∇αmμ + γαμ∇βmμ

= Nnμ∇μ(nαnβ) − γμβ

(
NKμ

α + DμNnα − nμ∇αN
)

− γαμ

(
NKμ

β + DμNnβ − nμ∇βN
)

= N
(

nμ∇μnα︸ ︷︷ ︸
aα=N−1DαN

nβ + nα nμ∇μnβ︸ ︷︷ ︸
aβ=N−1DβN

) − NKβα − DβNnα − NKαβ − DαNnβ

= −2NKαβ .

Hence the simple result:
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Lmγ = −2NK . (4.30)

One can deduce easily from this relation the value of the Lie derivative of the
3-metric along the unit normal n. Indeed, since m = Nn,

Lmγαβ = LNnγαβ

= Nnμ∇μγαβ + γμβ∇α(Nnμ) + γαμ∇β(Nnμ)

= Nnμ∇μγαβ + γμβnμ

︸ ︷︷ ︸
0

∇αN + Nγμβ∇αnμ + γαμnμ

︸ ︷︷ ︸
0

∇βN + Nγαμ∇βnμ

= NLnγαβ.

Hence

Lnγ = 1

N
Lmγ . (4.31)

Consequently, Eq. (4.30) leads to

K = −1

2
Lnγ . (4.32)

This equation sheds some new light on the extrinsic curvature tensor K. In addition
to being the projection on Σt of the gradient of the unit normal to Σt [cf. Eq. (3.65)],

K = −−→
γ

∗∇n, (4.33)

as well as the measure of the difference between D-derivatives and ∇-derivatives for
vectors tangent to Σt [cf. Eq. (3.70)],

∀(u, v) ∈ T (Σ)2, K(u, v)n = Duv − ∇uv, (4.34)

K is also minus one half the Lie derivative of Σt’s metric along the unit timelike
normal.

Remark 4.5 In numerous numerical relativity articles, Eq. (4.32) is used to define
the extrinsic curvature tensor of the hypersurface Σt . It is worth to keep in mind
that this equation has a meaning only because Σt is member of a foliation. Indeed
the right-hand side is the derivative of the induced metric in a direction which is
not parallel to the hypersurface and therefore this quantity could not be defined for a
single hypersurface, as considered in Chap. 3. On the contrary, the definition adopted
here, i.e. Eq. (3.20), is valid even for a single hypersurface.
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4.3.6 Evolution of the Orthogonal Projector

Let us now evaluate the Lie derivative of the orthogonal projector onto Σt along the
normal evolution vector. Using Eqs. (2.92) and (4.26), we have

Lmγ α
β = mμ∇μγ α

β − γ μ
β∇μmα + γ α

μ∇βmμ

= Nnμ∇μ(nαnβ) + γ μ
β

(
NKα

μ + DαNnμ − nα∇μN
)

− γ α
μ

(
NKμ

β + DμNnβ − nμ∇βN
)

= N
(

nμ∇μnα

︸ ︷︷ ︸
N−1DαN

nβ + nα nμ∇μnβ︸ ︷︷ ︸
N−1DβN

) + NKα
β − nαDβN − NKα

β − DαNnβ

= 0,

i.e.

Lm
−→
γ = 0 . (4.35)

An important consequence of this is that the Lie derivative along m of any tensor
field T tangent to Σt is a tensor field tangent to Σt :

T tangent to Σt =⇒ LmT tangent to Σt . (4.36)

Indeed a distinctive feature of a tensor field tangent to Σt is

−→
γ

∗
T = T. (4.37)

Assume for instance that T is a tensor field of type (1,1). Then the above equation
writes [cf. Eq. (3.60)]

γ α
μγ v

βTμ
v = Tα

β.

Taking the Lie derivative along m of this relation, employing the Leibniz rule and
making use of Eq. (4.35), leads to

Lm
(
γ α

μγ v
βTμ

v
) = LmTα

β

Lmγ α
μ︸ ︷︷ ︸

0

γ v
βTμ

v + γ α
μ Lmγ v

β︸ ︷︷ ︸
0

Tμ
v + γ α

μγ v
βLmTμ

v = LmTα
β

−→
γ

∗
LmT = LmT.

This shows that LmT is tangent to Σt . The proof is readily extended to any type of
tensor field tangent to Σt . Notice that the property (4.36) generalizes that obtained
for vectors in Sec. 4.3.2 [cf. Eq. (4.12)].
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Remark 4.6 An illustration of property (4.36) is provided by Eq. (4.30), which says
that Lmγ is −2NK : K being tangent to Σt, we have immediately that Lmγ is
tangent to Σt .

Remark 4.7 Contrary to Lnγ and Lmγ , which are related by Eq. (4.31), Ln
−→
γ and

Lm
−→
γ are not proportional. Indeed a calculation similar to that which lead to Eq.

(4.31) gives

Ln
−→
γ = 1

N
Lm

−→
γ + n ⊗ D ln N .

Therefore the property Lm
−→
γ = 0 implies

Ln
−→
γ = n ⊗ D ln N �= 0. (4.38)

Hence the privileged role played by m regarding the evolution of the hypersurfaces
Σt is not shared by n; this merely reflects that the hypersurfaces are Lie dragged by
m, not by n.

4.4 Last Part of the 3+1 Decomposition of the Riemann Tensor

4.4.1 Last Non Trivial Projection of the Spacetime
Riemann Tensor

In Chap. 3, we have formed the fully projected part of the spacetime Riemann tensor,

i.e. −→γ ∗4Riem, yielding the Gauss equation [Eq. (3.73)], as well as the part projected
three times onto Σt and once along the normal n, yielding the Codazzi equation
[Eq. (3.81)]. These two decompositions involve only fields tangents to Σt and their
derivatives in directions parallel to Σt, namely γ , K, Riem and DK. This is why they
could be meaningful for a single hypersurface. In the present section, we form the
projection of the spacetime Riemann tensor twice onto Σt and twice along n. As we
shall see, this involves a derivative of K in the direction normal to the hypersurface,
which makes sense only for a foliation.

As for the Codazzi equation, the starting point of the calculation is the Ricci
identity applied to the vector n, i.e. Eq. (3.78). But instead of projecting it totally
onto Σt, let us project it only twice onto Σt and once along n:

γαμnσ γ v
β

4Rμ
ρvσ nρ = γαμnσ γ v

β(∇v∇σ nμ − ∇σ ∇vnμ).

Substituting Eq. (4.24) for ∇n, we get successively



68 4 Geometry of Foliations

γ αμnργ v
βnσ4Rμ

ρvσ = γαμnσ γ v
β

[−∇v(K
μ

σ + Dμ ln N nσ ) + ∇σ (Kμ
v + Dμ ln N nv)

]

= γαμnσ γ v
β

[ − ∇vKμ
σ − ∇vnσ Dμ ln N − nσ ∇vDμ ln N

+ ∇σ Kμ
v + ∇σ nvDμ ln N + nv∇σ Dμ ln N

]

= γαμγ v
β

[
Kμ

σ ∇vnσ + ∇vDμ ln N + nσ ∇σ Kμ
v + Dv ln NDμ ln N

]

= −Kασ Kσ
β + DβDα ln N + γ μ

αγ v
βnσ ∇σ Kμv + Dα ln NDβ ln N

= −Kασ Kσ
β + 1

N
DβDαN + γ μ

αγ v
βnσ ∇σ Kμv.

(4.39)
Note that we have used Kμ

σ nσ = 0, nσ ∇vnσ = 0, nσ nσ = −1, nσ ∇σ nv = Dv

ln N and γ v
βnv = 0 to get the third equality. Let us now show that the term

γ μ
αγ v

βnσ ∇σ Kμv is related to LmK. Indeed, from the expression (2.92) of the Lie
derivative:

LmKαβ = mμ∇μKαβ + Kμβ∇αmμ + Kαμ∇βmμ.

Substituting Eq. (4.26) for ∇αmμ and ∇βmμ leads to

LmKαβ = Nnμ∇μKαβ − 2NKαμKμ
β − KαμDμN nβ − KβμDμN nα.

Let us project this equation onto Σ t, i.e. let us apply the operator −→
γ

∗
to both sides.

Using the property −→
γ

∗
LmK = LmK, which stems from the fact that LmK is tangent

to Σt since K is [property (4.36)], we get

LmKαβ = Nγ μ
αγ v

βnσ ∇σ Kμv − 2NKαμKμ
β. (4.40)

Extracting γ μ
αγ v

βnσ ∇σ Kμv from this relation and plugging it into Eq. (4.39) results
in

γαμnργ v
βnσ 4Rμ

ρvσ = 1

N
LmKαβ + 1

N
DαDβN + KαμKμ

β . (4.41)

Note that we have written DβDαN = DαDβN (D has no torsion). Equation (4.41)
is the relation we sought. It is sometimes called the Ricci equation [not to be con-
fused with the Ricci identity (2.68)]. Together with the Gauss equation (3.73) and the
Codazzi equation (3.81), it completes the 3+1 decomposition of the spacetime Rie-
mann tensor. Indeed the part projected three times along n vanish identically, since
4Riem(n, n, n, .) = 0 and 4Riem(., n, n, n) = 0 thanks to the partial antisymmetry
of the Riemann tensor. Accordingly one can project 4Riem at most twice along n to
get some non-vanishing result.

It is worth to note that the left-hand side of the Ricci equation (4.41) is a term
which appears in the contracted Gauss equation (3.74). Therefore, by combining
the two equations, we get a formula which does no longer contain the spacetime
Riemann tensor, but only the spacetime Ricci tensor:

γ μ
αγ v

β
4Rμv = − 1

N
LmKαβ − 1

N
DαDβN + Rαβ + KKαβ − 2KαμKμ

β , (4.42)
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or in index-free notation:

−→
γ

∗4R = − 1

N
LmK − 1

N
DDN + R + KK − 2K · −→

K . (4.43)

4.4.2 3+1 Expression of the Spacetime Scalar Curvature

Let us take the trace of Eq. (4.43) with respect to the metric γ . This amounts to
contracting Eq. (4.42) with γ αβ. In the left-hand side, we have γ αβγ μ

αγ v
β = γ μv

and in the right-hand we can limit the range of variation of the indices to {1, 2, 3}
since all the involved tensors are spatial ones [including LmK, thanks to the property
(4.36)]. Hence

γ μv4Rμv = − 1

N
γ ijLmKij − 1

N
DiD

iN + R + K2 − 2KijK
ij. (4.44)

Now γ μv4Rμv = (gμv + nμnv)4Rμv = 4R + 4Rμvnμnv and

−γ ijLmKij = −Lm(γ ijKij︸ ︷︷ ︸
K

) + KijLmγ ij, (4.45)

with Lmγ ij evaluated from the very definition of the inverse 3-metric:

γikγ
kj = δj

i

⇒Lmγikγ
kj + γikLmγ kj = 0

⇒γ ilγ kjLmγlk + γ ilγlk︸ ︷︷ ︸
δi

k

Lmγ lj = 0

⇒Lmγ ij = −γ ikγ jlLmγkl

⇒Lmγ ij = 2Nγ ikγ klKkl

⇒ Lmγ ij = 2NKij , (4.46)

where we have used Eq. (4.30). Plugging Eq. (4.46) into Eq. (4.45) gives

−γ ijLmKij = −LmK + 2NKijK
ij. (4.47)

Consequently Eq. (4.44) becomes

4R + 4Rμvnμnv = R + K2 − 1

N
LmK − 1

N
DiD

iN . (4.48)

It is worth to combine with equation with the scalar Gauss relation (3.75) to get rid
of the Ricci tensor term 4Rμvnμnv and obtain an equation which involves only the
spacetime scalar curvature 4R :
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4R = R + K2 + KijK
ij − 2

N
LmK − 2

N
DiD

iN . (4.49)

Example 4.4 Let us check Eq. (4.49) on the hyperboloidal slicing of
Minkowski spacetime considered in Examples 4.1, 4.2 and 4.3. We have 4R = 0
for (M , g) is Minkowski spacetime. On the right-hand side, R = −6/b2 [Eq.
(3.44)], K2 = 9/b2 [Eq. (3.48)], KijKij = γijγ

ij/b2 = 3/b2 [Eq. (4.29)] and
LmK = Lm(−3/b) = 0 [Eq. (3.48)], so that

R + K2 + KijK
ij − 2

N
LmK = 6

b2 . (4.50)

There remains to evaluate 2N−1DiDiN . To this aim, let us use the coordinates
(xi) = (ρ, θ, ϕ) introduced on Σ0 by Eq. (3.40)–(3.41). In these coordinates,
the lapse function takes the simple form

N = cosh ρ. (4.51)

Indeed, the last equation of (3.41) and (3.38) imply

cosh ρ = w

b
=

√

1 + x2 + y2 + z2

b2 ,

which coincides with expression (4.14) for N. The Laplacian of N can be
computed via a standard formula which follows readily from (2.65):

DiD
iN = 1√

γ

∂

∂xi

(√
γ γ ij ∂N

∂xj

)
, (4.52)

where γ is the determinant of the metric components (γij). Given (3.43),
we have

√
γ = b3 sinh2 ρ sin θ. Since γ ij is diagonal [cf. Eq. (3.43)] and

N depends only on ρ, we have

DiD
iN = 1

b3 sinh2 ρ sin θ

∂

∂ρ

(
b3 sinh2 ρ sin θ

1

b2

∂N

∂ρ︸︷︷︸
sinh ρ

)

= 1

b2 sinh2 ρ

∂

∂ρ

(
sinh3 ρ

)
= 3

b2 cosh ρ.

Hence

− 2

N
DiD

iN = − 6

b2 .

In view of Eq. (4.50) and 4R = 0 we conclude that Eq. (4.49) is satisfied.
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12. Chruściel, P.T., Friedrich, H. (eds): The Einstein equations and the large scale behavior of

gravitational fields—50 years of the Cauchy problem in general relativity. Birkhäuser Verlag,
Basel (2004)



Chapter 5
3+1 Decomposition of Einstein Equation

Abstract The fundamental equation for general relativity, the Einstein equation,
is decomposed orthogonally with respect to a 3+1 foliation of spacetime. Then we
introduce spatial coordinates on the hypersurfaces forming the foliation, thereby
introducing the famous shift vector. This enables one to turn the 3+1 Einstein equation
into a system of partial-differential equations. This system can be formulated as a
Cauchy problem with constraints and we discuss briefly the known existence and
uniqueness results regarding it. Finally we discuss the ADM Hamiltonian approach
to general relativity, which is based on the 3+1 decomposition.

5.1 Einstein Equation in 3+1 Form

5.1.1 The Einstein Equation

After the first two chapters devoted to the geometry of hypersurfaces and foliations,
we are now back to physics: we consider a spacetime (M , g) such that g obeys the
Einstein equation :

4R − 1

2
4Rg = 8πT , (5.1)

where 4R is the Ricci tensor associated with g [cf. Eq. (2.75)], 4R the corresponding
Ricci scalar, and T the matter stress-energy tensor. We are using units in which
Newton’s gravitational constant G is set to unity. Otherwise, the coefficient in front
of T in Eq. (5.1) should read 8πG, and even 8πG/c4 if we are relaxing c = 1.

We shall also use the equivalent form

4R = 8π

(
T − 1

2
Tg

)
, (5.2)

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 73
DOI: 10.1007/978-3-642-24525-1_5, © Springer-Verlag Berlin Heidelberg 2012
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where T := gμvTμv stands for the trace (with respect to g) of T.

Remark 5.1 We are considering the Einstein equation without any cosmological
constant. Taking into account a non-vanishing cosmological Λ, the Einstein equation
(5.1) should be written

4R − 1

2
4Rg + Λg = 8πT. (5.3)

We limit ourselves to Λ = 0, but all results could be easily generalized to accom-
modate for Λ �= 0.

Let us assume that the spacetime (M , g) is globally hyperbolic (cf. Sect. 4.2.1)
and let (Σt)t∈R be a foliation of M by a family of spacelike hypersurfaces.
The 3+1 formalism for general relativity amounts to projecting the Einstein equation
(5.1) onto Σt and perpendicularly to Σt . To this aim let us first consider the 3+1
decomposition of the stress-energy tensor.

5.1.2 3+1 Decomposition of the Stress-Energy Tensor

From the very definition of a stress-energy tensor, the matter energy density as
measured by the Eulerian observer introduced in Sect. 4.3.3 is

E := T(n, n) . (5.4)

This follows from the fact that the 4-velocity of the Eulerian observer is the unit
normal vector n of the hypersurfaces Σt .

Similarly, also from the very definition of a stress-energy tensor, the matter
momentum density as measured by the Eulerian observer is the linear form

p := −T(
−→
γ (.), n) , (5.5)

i.e. the linear form defined by

∀v ∈ Tp(M ), 〈p, v〉 = −T(
−→
γ (v), n). (5.6)

In components:

pα = −Tμvγ
μ

αnv. (5.7)

Notice that, thanks to the projector −→
γ , p is a linear form tangent to Σt .

Remark 5.2 The momentum density p is often denoted j. Here we reserve the latter
for electric current density.
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If we permute the role of −→
γ and n in (5.5), we obtain the energy flux 1-form as

measured by the Eulerian observer:

ϕ := −T(n,
−→
γ (.)) . (5.8)

Given an elementary (2-dimensional) surface of area dS in Σt, ϕ gives the energy
de that crosses the surface during the Eulerian observer’s proper time dτ according
to

de

dτ
= 〈ϕ, dS〉. (5.9)

A fundamental property of the stress-energy tensor T is to be symmetric. As a con-
sequence:

ϕ = p . (5.10)

Remark 5.3 In units where c is not set to unity, this formula should read ϕ = c2p.

It can be interpreted as an expression of the equivalence between mass and energy
in relativity.

Finally, still from the very definition of a stress-energy tensor, the matter stress
tensor as measured by the Eulerian observer is the bilinear form

S := −→
γ

∗
T , (5.11)

or, in components,

Sαβ = Tμvγ
μ

αγ v
β. (5.12)

As for p, S is a tensor field tangent to Σt . Let us recall the physical interpretation of
the stress tensor S: given two spacelike unit vectors e and e′ (possibly equal) in the
rest frame of the Eulerian observer (i.e. two unit vectors orthogonal to n), S(e, e′)
is the force in the direction e acting on the unit surface whose normal is e′. Let us
denote by S the trace of S with respect to the metric γ (or equivalently with respect
to the metric g, since S is tangent to Σt):

S := γ ijSij = gμvSμv . (5.13)

The knowledge of (E, p, S) is sufficient to reconstruct T since

T = S + n ⊗ p + p ⊗ n + En ⊗ n . (5.14)

This formula is easily established by substituting Eq. (3.53) for γ α
β into Eq. (5.12)

and expanding the result. It constitutes the 3+1 decomposition of T.
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Remark 5.4 Expression (5.14) uses the fact that ϕ = p [Eq. (5.10)], otherwise it
should read T = S + n ⊗ ϕ + p ⊗ n + En ⊗ n.

Taking the trace of Eq. (5.14) with respect to the metric g yields

T = S + 2 〈p, n〉︸ ︷︷ ︸
0

+E 〈n, n〉︸ ︷︷ ︸
−1

,

hence

T = S − E. (5.15)

5.1.3 Projection of the Einstein Equation

With the above 3+1 decomposition of the stress-energy tensor and the 3+1 decompo-
sitions of the spacetime Ricci tensor obtained in Chaps. 3 and 4, we are fully equipped
to perform the projection of the Einstein equation (5.1) onto the hypersurface Σt and
along its normal. There are only three possibilities:

5.1.3.1 Full Projection onto Σt

This amounts to applying the operator −→
γ

∗
to the Einstein equation. It is convenient

to take the version (5.2) of the latter; we get

−→
γ

∗4R = 8π

(
−→
γ

∗
T − 1

2
T−→

γ
∗
g
)

. (5.16)

−→
γ

∗4R is given by Eq. (4.43) (combination of the contracted Gauss equation with the
Ricci equation), −→γ ∗

T is by definition S, T = S − E [Eq. (5.15)], and −→
γ

∗
g is simply

γ . Therefore

− 1

N
LmK − 1

N
DDN + R + KK − 2K · −→

K = 8π

[
S − 1

2
(S − E)γ

]
,

or equivalently

LmK = −DDN + N
{

R + KK − 2K · −→
K + 4π

[
(S − E)γ − 2S

]}
. (5.17)

In components:

LmKαβ = −DαDβN +N

{
Rαβ +KKαβ −2KαμKμ

β +4π
[
(S − E)γαβ − 2Sαβ

] }
. (5.18)
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Notice that each term in the above equation is a tensor field tangent to Σt . For LmK,

this results from the fundamental property (4.36) of Lm. Consequently, we may
restrict to spatial indices without any loss of generality and write Eq. (5.18) as

LmKij = −DiDjN + N
{

Rij + KKij − 2KikKk
j + 4π [(S − E)γij − 2Sij]

}
.

(5.19)

5.1.3.2 Full Projection Perpendicular to Σt

This amounts to applying the Einstein equation (5.1), which is an identity between
bilinear forms, to the couple (n, n); we get, since g(n, n) = −1,

4R(n, n) + 1

2
4R = 8πT(n, n).

Using the scalar Gauss equation (3.75), and noticing that T(n, n) = E [Eq. (5.4)]
yields

R + K2 − KijK
ij = 16πE . (5.20)

This equation is called the Hamiltonian constraint. The word ‘constraint’ will be
justified in Sect. 5.4.3 and the qualifier ‘Hamiltonian’ in Sect. 5.5.2.

5.1.3.3 Mixed Projection

Finally, let us project the Einstein equation (5.1) once onto Σt and once along the
normal n:

4R(n,
−→
γ (.)) − 1

2
4R g(n,

−→
γ (.))︸ ︷︷ ︸
0

= 8πT(n,
−→
γ (.)).

By means of the contracted Codazzi equation (3.82) and T(n,
−→
γ (.)) = −p [Eq. (5.5)],

we get

D · −→
K − DK = 8πp , (5.21)

or, in components,

DjK
j
i − DiK = 8πpi . (5.22)
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This equation is called the momentum constraint. Again, the word ‘constraint’ will
be justified in Sect. 5.4.

5.1.3.4 Summary

The Einstein equation is equivalent to the system of three equations: (5.17), (5.20)
and (5.21). Equation (5.17) is a rank 2 tensorial (bilinear form) equation within Σt,

involving only symmetric tensors: it has therefore 6 independent components. Equa-
tion (5.20) is a scalar equation and Eq. (5.21) is a rank 1 tensorial (linear forms)
within Σt : it has therefore 3 independent components. The total number of inde-
pendent components is thus 6 + 1 + 3 = 10, i.e. the same as the original Einstein
equation (5.1).

5.2 Coordinates Adapted to the Foliation

5.2.1 Definition

The system (5.17)+(5.20)+(5.21) is a system of tensorial equations. In order to trans-
form it into a system of partial differential equations (PDE), one must introduce
coordinates on the spacetime manifold M , which we have not done yet. Coordinates
adapted to the foliation (Σt)t∈R are set in the following way. On each
hypersurface Σt one introduces some coordinate system (xi) = (x1, x2, x3).

If this coordinate system varies smoothly between neighbouring hypersurfaces, then
(xα) = (t, x1, x2, x3) constitutes a well-behaved coordinate system on M . We shall
call (xi) = (x1, x2, x3) the spatial coordinates.

Let us denote by (∂α) = (∂ t, ∂ i) the natural basis of Tp(M ) associated with the
coordinates (xα), i.e. the set of vectors

∂ t := ∂

∂t
(5.23)

∂ i := ∂

∂xi
, i ∈ {1, 2, 3}. (5.24)

Notice that the vector ∂ t is tangent to the lines of constant spatial coordinates, i.e.
the curves of M defined by (x1 = K1, x2 = K2, x3=K3), where K1, K2 and K3 are
three constants (cf. Fig. 5.1). We shall call ∂ t the time vector.

Remark 5.5 ∂ t is not necessarily a timelike vector. This will be discussed further
below [Eqs. (5.32)–(5.34)].

For any i ∈ {1, 2, 3}, the vector ∂ i is tangent to the lines t = K0, xj = Kj

(j �= i), where K0 and Kj (j �= i) are three constants. Having t constant, these lines
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Fig. 5.1 Coordinates (xi) on
the hypersurfaces Σt : each
line xi = const cuts across
the foliation (Σt)t∈R and
defines the time vector ∂ t
and the shift vector β of the
spacetime coordinate system
(xα) = (t, xi)

belong to the hypersurfaces Σt . This implies that ∂ i is tangent to Σt:
∂ i ∈ Tp(Σt), i ∈ {1, 2, 3}. (5.25)

5.2.2 Shift Vector

The dual basis associated with (∂α) is the gradient 1-form basis (dxα), which is a
basis of the space of linear forms T ∗

p (M ) (cf. Sect. 2.2.3): In particular, the 1-form
dt = ∇t is dual to the vector ∂ t [cf. Eqs. (2.20) and (2.14) with α = β = 0]:

〈∇t, ∂ t〉 = 1. (5.26)

Hence the time vector ∂ t obeys to the same property as the normal evolution vector
m, since 〈∇t, m〉 = 1 [Eq. (4.11)]. In particular, ∂ t Lie drags the hypersurfaces Σt,

as m does (cf. Sect. 4.3.2). In general the two vectors ∂ t and m differ. They coincide
only if the coordinates (xi) are such that the lines xi = const are orthogonal to
the hypersurfaces Σt (cf. Fig. 5.1). The difference between ∂ t and m is called the
shift vector and is denoted β:

∂ t =: m + β . (5.27)

As for the lapse, the name shift vector has been coined by Wheeler [1].
By combining Eqs. (5.26) and (4.11), we get

〈∇t,β〉 = 〈∇t, ∂ t〉 − 〈∇t, m〉 = 1 − 1 = 0.

This shows that the vector β is tangent to the hypersurfaces Σt . Since ∇t = −N−1n
[Eq. (4.8)], the relation 〈∇t,β〉 = 0 can be written

n · β = 0 . (5.28)
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The lapse function and the shift vector have been introduced for the first time
explicitly, although without their present names, by Choquet–Bruhat in 1956 [2].

It is useful to rewrite Eq. (5.27) by means of the relation m = Nn [Eq. (4.9)]:

∂ t = Nn + β . (5.29)

Since the vector n is normal to Σt and β tangent to Σt, Eq. (5.29) can be seen as
a 3+1 decomposition of the time vector ∂ t and we may write β as the orthogonal
projection of ∂ t onto Σt:

β = −→
γ (∂ t). (5.30)

The scalar square of ∂ t is deduced immediately from Eq. (5.29), taking into
account n · n = −1 and Eq. (5.28):

∂ t · ∂ t = −N2 + β · β. (5.31)

Hence we have the following:

∂ t is timelike ⇐⇒ β · β < N2, (5.32)
∂ t is null ⇐⇒ β · β = N2, (5.33)

∂ t is spacelike ⇐⇒ β · β > N2. (5.34)

Remark 5.6 A shift vector that fulfills the condition (5.34) is sometimes called a
superluminal shift . Notice that, since a priori the time vector ∂ t is a pure coordinate
quantity and is not associated with the 4-velocity of some observer (contrary to m,
which is proportional to the 4-velocity of the Eulerian observer), there is nothing
unphysical in having ∂ t spacelike.

Since β is tangent to Σt, let us introduce the components of β and the metric dual
form β with respect to the spatial coordinates (xi) according to

β =: β i∂ i and β =: βidxi. (5.35)

Equation (5.29) then shows that the components of the unit normal vector n with
respect to the natural basis (∂α) are expressible in terms of N and (β i) as

nα =
(

1

N
,−β1

N
,−β2

N
,−β3

N

)
. (5.36)

Notice that the covariant components (i.e. the components of n with respect to the
basis (dxα) of T ∗

p (M )) are immediately deduced from the relation n = −N∇t
[Eq. (4.8)]:

nα = (−N, 0, 0, 0) . (5.37)
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Example 5.1 Let us consider the hyperboloidal slicing of Minkowski space-
time presented in Examples 4.1–4.4. We naturally choose the H

3 coordinates
(xi) = (ρ, θ, ϕ) introduced in Example 3.4 as the spatial coordinates on each
Σt . In this Chapter, we shall use a hat to distinguish the adapted coordinates
(xα) = (t, ρ, θ, ϕ) from the Minkowskian ones, (X α̂) = (w, x, y, z). The two
coordinate systems cover the entire manifold M and are related by

⎧⎪⎪⎨
⎪⎪⎩

x = b sinh ρ sin θ cos ϕ

y = b sinh ρ sin θ sin ϕ

z = b sinh ρ cos θ

w = t + b cosh ρ.

(5.38)

These relations are adapted from the system (3.41) by modifying the last equa-
tion to take into account the generalization (4.13) of Eq. (3.38) to t �= 0. The
time vector ∂ t of the adapted coordinates (xα) is obtained from the formula

∂ t =
(

∂

∂t

)
xi

=
(

∂w

∂t

)
xi︸ ︷︷ ︸

1

∂

∂w
+

(
∂x

∂t

)
xi︸ ︷︷ ︸

0

∂

∂x
+

(
∂y

∂t

)
xi︸ ︷︷ ︸

0

∂

∂y
+

(
∂z

∂t

)
xi︸ ︷︷ ︸

0

∂

∂z
.

Since ∂/∂w = ∂w—the first vector of the natural basis associated with the
Minkowskian coordinates, we conclude that

∂ t = ∂w. (5.39)

Accordingly, the components of ∂ t with respect to the Minkowskian coordi-
nates are simply

(∂ t)
α̂ = (1, 0, 0, 0). (5.40)

The vector ∂ t is depicted in Fig. 5.2. The fact that this vector is parallel to the
w-axis is not surprising since from (5.38), the line (ρ, θ, ϕ) = const is a line
x = const.

The components of the shift vector with respect to the Minkowskian coor-
dinates are computed from Eq. (5.29): βα̂ = (∂ t)

α̂ − Nnα̂ . Given the values
(4.14) for N and (4.16) for nα̂, we obtain

βα̂ = −1

b

(
x2 + y2 + z2

b
, xN, yN, zN

)
. (5.41)

The vector β is represented in Fig. 5.2.
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Fig. 5.2 Time vector ∂ t and shift vector β corresponding to the choice of the hyperboloidal coor-
dinates (xi) = (ρ, θ, ϕ) on each hypersurface Σt of the slicing considered in Fig. 4.4

5.2.3 3+1 Writing of the Metric Components

Let us introduce the components γij of the 3-metric γ with respect to the coordinates
(xi)

γ =: γijdxi ⊗ dxj. (5.42)

From the definition of β, we have

βi = γijβ
j. (5.43)

The components gαβ of the metric g with respect to the coordinates (xα) are
defined by

g =: gαβdxα ⊗ dxβ. (5.44)

Each component can be computed as

gαβ = g(∂α, ∂β). (5.45)

Accordingly, thanks to Eq. (5.31),

g00 = g(∂ t, ∂ t) = ∂ t · ∂ t = −N2 + β · β = −N2 + βiβ
i (5.46)

and, thanks to Eq. (5.27)

g0i = g(∂ t, ∂ i) = (m + β) · ∂ i.
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Now, as noticed above [cf. Eq. (5.25)], the vector ∂ i is tangent to Σt, so that m·∂ i = 0.

Hence

g0i = β · ∂ i = 〈β, ∂ i〉 = 〈βjdxj, ∂ i〉 = βj 〈dxj, ∂ i〉︸ ︷︷ ︸
δj

i

= βi. (5.47)

Besides, since ∂ i and ∂ j are tangent to Σt,

gij = g(∂ i, ∂ j) = γ (∂ i, ∂ j) = γij. (5.48)

Collecting Eqs. (5.46), (5.47) and (5.48), we get the following expression of the
metric components in terms of 3+1 quantities:

gαβ =
(

g00 g0j

gi0 gij

)
=

(−N2 + βkβ
k βj

βi γij

)
, (5.49)

or, in terms of line elements [using Eq. (5.43)],

gμvdxμdxν = −N2dt2 + γij(dxi + β idt)(dxj + β jdt) . (5.50)

The components of the inverse metric are given by the matrix inverse of (5.49):

gαβ =
(

g00 g0j

gi0 gij

)
=

⎛
⎝− 1

N2
β j

N2

β i

N2 γ ij − β iβ j

N2

⎞
⎠ . (5.51)

Indeed, it is easily checked that the matrix product gαμgμβ is equal to the identity
matrix δα

β.

Remark 5.7 Notice that gij = γij but that in general gij �= γ ij.

One can deduce from the above formulæ a simple relation between the determi-
nants of g and γ . Let us first define the latter ones by

g := det(gαβ) , (5.52)

γ := det(γij) . (5.53)

Notice that g and γ depend upon the choice of the coordinates (xα). They are not
scalar quantities, but scalar densities. Using Cramer’s rule for expressing the inverse
(gαβ) of the matrix (gαβ), we have

g00 = C00

det(gαβ)
= C00

g
, (5.54)



84 5 3+1 Decomposition of Einstein Equation

where C00 is the element (0,0) of the cofactor matrix associated with (gαβ). It is
given by C00 = (−1)0M00 = M00, where M00 is the minor (0,0) of the matrix (gαβ),

i.e. the determinant of the 3 × 3 matrix deduced from (gαβ) by suppressing the first
line and the first column. From Eq. (5.49), we read

M00 = det(γij) = γ.

Hence Eq. (5.54) becomes

g00 = γ

g
.

Expressing g00 from Eq. (5.51) yields then g = −N2γ, or equivalently,

√−g = N
√

γ . (5.55)

Example 5.2 Let us evaluate the metric components within the adapted coordi-
nates (xα) = (t, ρ, θ, ϕ), in the case of the hyperboloidal slicing of Minkowski
spacetime considered in Example 5.1. We shall compute the components gαβ

from the equality of the line element expressed in both coordinates systems:

gμvdxμdxv = gμ̂v̂dXμ̂dXv̂ = −dw2 + dx2 + dy2 + dz2. (5.56)

From the last line of (5.38), we have

dw2 = (dt + b sinh ρ dρ)2 = dt2 + 2b sinh ρ dt dρ + b2 sinh2 ρ dρ2.

On the other side, dx2+dy2+dz2 is given by Eq. (3.42). Accordingly, Eq. (5.56)
becomes

gμvdxμdxv = −dt2−2b sinh ρ dt dρ+b2
[
dρ2 + sinh2 ρ(dθ2 + sin2 θdϕ2)

]
,

which can be put in the form

gμvdxμdxv = − cosh2 ρ dt2 + b2
[(

dρ − sinh ρ

b
dt

)2

+ sinh2 ρ(dθ2 + sin2 θdϕ2)

]
.

(5.57)

By comparing with (5.50), we get the lapse function, the shift vector and the
3-metric:
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N = cosh ρ (5.58)

β i =
(

− sinh ρ

b
, 0, 0

)
(5.59)

γij = diag
(

b2, b2 sinh2 ρ, b2 sinh2 ρ sin2 θ
)

. (5.60)

In particular, we recover the value of N obtained in Chap. 4 [Eq. (4.51)] and
the value of γij obtained in Chap. 3 [Eq. (3.43)]. Note that β · β = γijβ

iβ j =
sinh2 ρ, so that the shift is superluminal for ρ > ln(1 + √

2) � 0.881. The
components of the unit normal with respect to the adapted coordinates are
obtained via formulas (5.36) and (5.37):

nα = (− cosh ρ, 0, 0, 0) and nα =
(

1

cosh ρ
,

1

b
tanh ρ, 0, 0

)
. (5.61)

Note that these components are different from (4.15) and (4.16), for the latter
are the components nα̂ and nα̂ with respect to the Minkowskian coordinates.

5.2.4 Choice of Coordinates via the Lapse and the Shift

We have seen above that giving a coordinate system (xα) on M such that the hyper-
surfaces x0 = const. are spacelike determines uniquely a lapse function N and a shift
vector β. The converse is true in the following sense: setting on some hypersurface
Σ0 a scalar field N, a vector field β and a coordinate system (xi) uniquely specifies
a coordinate system (xα) in some neighbourhood of Σ0, such that the hypersur-
face x0 = 0 is Σ0. Indeed, the knowledge of the lapse function a each point of Σ0
determines a unique vector m = Nn and consequently the location of the “next”
hypersurface Σδt by Lie transport along m (cf. Sect. 4.3.2). Graphically, we may
also say that for each point of Σ0 the lapse function specifies how far is the point of
Σδt located “above” it (“above” meaning perpendicularly to Σ0, cf. Fig. 4.2). Then
the shift vector tells how to propagate the coordinate system (xi) from Σ0 to Σδt

(cf. Fig. 5.1).
This way of choosing coordinates via the lapse function and the shift vector is

one of the main topics in 3+1 numerical relativity and will be discussed in detail in
Chap. 10.
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5.3 3+1 Einstein Equation as a PDE System

5.3.1 Lie Derivatives Along m as Partial Derivatives

Let T be any tensor field tangent to Σt . Thanks to Eq. (5.27), we can write

LmT = L∂ t T − L βT. (5.62)

This implies that L∂ t T is a tensor field tangent to Σt, since both LmT and L βT are
tangent to Σt, the former by the property (4.36) and the latter because β and T are
tangent to Σt . Moreover, if one uses tensor components with respect to a coordinate
system (xα) = (t, xi) adapted to the foliation, the Lie derivative along ∂ t reduces
simply to the partial derivative with respect to t [cf. Eq. (2.86)]:

L∂ t T
i...

j... = ∂

∂t
T i...

j....

Accordingly, in terms of components with respect to adapted coordinates, Eq. (5.62)
can be written as

LmTi...
j... =

(
∂

∂t
− L β

)
Ti...

j... . (5.63)

We may apply this formula to the term LmK which occurs in the 3+1 Einstein
equation (5.17):

LmKij =
(

∂

∂t
− L β

)
Kij. (5.64)

By means of formula (2.90), one can express LβK in terms of partial derivatives:

LβKij = βk ∂Kij

∂xk
+ Kkj

∂βK

∂xi
+ Kik

∂βK

∂xj
. (5.65)

Similarly, thanks to (5.63), the relation (4.30) between Lmγ and K becomes(
∂

∂t
− Lβ

)
γij = −2NKij. (5.66)

In this relation, one may evaluate the Lie derivative with the connection D instead
of partial derivatives [cf. Eq. (2.92)]:

Lβγij = βk Dkγij︸ ︷︷ ︸
0

+γkjDiβ
k + γikDjβ

k,

i.e.

Lβγij = Diβj + Djβi. (5.67)
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5.3.2 3+1 Einstein System

Using Eqs. (5.64) and (5.66), we rewrite the 3+1 Einstein system (5.19), (5.20) and
(5.22) as

(
∂

∂t
− Lβ

)
γij = −2NKij (5.68)

(
∂

∂t
− Lβ

)
Kij = −DiDjN + N

{
Rij + KKij − 2KikKk

j + 4π
[
(S − E)γij − 2Sij

]}

(5.69)

R + K2 − KijK
ij = 16πE (5.70)

DjK
j
i − DiK = 8πpi . (5.71)

In this system, the covariant derivatives Di can be expressed in terms of partial
derivatives with respect to the spatial coordinates (xi) by means of the Christoffel
symbols Γ i

jk of D associated with (xi):

DiDjN = ∂2N

∂xi∂xj
− Γ k

ij
∂N

∂xk
, (5.72)

DjK
j
i = ∂Kj

i

∂xj
+ Γ j

jkKk
i − Γ k

jiK
j
k, (5.73)

DiK = ∂K

∂xi
. (5.74)

The Lie derivatives along β can be expressed in terms of partial derivatives with
respect to the spatial coordinates (xi), via Eqs. (5.65) and (5.67):

Lβγij = ∂βi

∂xj
+ ∂βj

∂xi
− 2Γ k

ijβk (5.75)

LβKij = βk ∂Kij

∂xk
+ Kkj

∂βk

∂xi
+ Kik

∂βK

∂xj
. (5.76)

Finally, the Ricci tensor and scalar curvature of γ are expressible according to
Eqs. (2.76), (2.69) and (2.78):

Rij = ∂Γ k
ij

∂xk
− ∂Γ k

ik

∂xj
+ Γ k

ijΓ
l
kl − Γ l

ikΓ
k

lj (5.77)

R = γ ijRij. (5.78)



88 5 3+1 Decomposition of Einstein Equation

For completeness, let us recall the expression of the Christoffel symbols in terms of
partial derivatives of the metric [cf. Eq. (2.62)]:

Γ k
ij = 1

2
γ kl

(
∂γlj

∂xi
+ ∂γil

∂xj
− ∂γij

∂xl

)
. (5.79)

Assuming that matter “source terms” (E, pi, Sij) are given, the system (5.68)–
(5.71), with all the terms made explicit according to Eqs. (5.72)–(5.79), constitutes
a second-order non-linear PDE system for the unknowns (γij, Kij, N, β i). It has
been first derived by Darmois, as early as 1927 [3], in the special case N = 1
and β = 0 (Gaussian normal coordinates, to be discussed in Sect. 5.4.2). The case
N �= 1, but still with β = 0, has been obtained by Lichnerowicz in 1939 [4,
5] and the general case (arbitrary lapse and shift) by Choquet-Bruhat in 1948 [6,
2]. A slightly different form, with Kij replaced by the “momentum conjugate to
γij”, namely π ij := √

γ (Kγ ij − Kij), has been derived by Arnowitt, Deser and
Misner [7] from their Hamiltonian formulation of general relativity (to be discussed in
Sect. 5.5).

Remark 5.8 In the numerical relativity literature, the 3+1 Einstein equations
(5.68)–(5.71) are sometimes called the “ADM equations”, in reference of the above
mentioned work by Arnowitt, Deser and Misner [7]. However, the major contribution
of ADM is a Hamiltonian formulation of general relativity (which we will discuss
succinctly in Sect. 5.5). This Hamiltonian approach is not used in numerical relativ-
ity, which proceeds by integrating the system (5.68)–(5.71). The latter was known
before ADM work. In particular, the recognition of the extrinsic curvature K as a
fundamental 3+1 variable was already achieved by Darmois in 1927 [3]. Moreover,
as stressed by York [8] (see also Ref. [9]), Eq. (5.69) is the spatial projection of the
spacetime Ricci tensor [i.e. is derived from the Einstein equation in the form (5.2),
cf. Sect. 5.1.3] whereas the dynamical equation in the ADM work [7] is instead the
spatial projection of the Einstein tensor [i.e. is derived from the Einstein equation in
the form (5.1)].

5.4 The Cauchy Problem

5.4.1 General Relativity as a Three-Dimensional
Dynamical System

The system (5.68)–(5.79) involves only three-dimensional quantities, i.e. tensor fields
defined on the hypersurface Σt, and their time derivatives. Consequently one may
forget about the four-dimensional origin of the system and consider that (5.68)–(5.79)
describes time evolving tensor fields on a single three-dimensional manifold Σ,

without any reference to some ambient four-dimensional spacetime. This constitutes
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the geometrodynamics point of view developed by Wheeler [1] (see also Fischer and
Marsden [10, 11] for a more formal treatment).

It is to be noticed that the system (5.68)–(5.79) does not contain any time derivative
of the lapse function N nor of the shift vector β. This means that N and β are
not dynamical variables. This should not be surprising if one remembers that they
are associated with the choice of coordinates (t, xi) (cf. Sect. 5.2.4). Actually the
coordinate freedom of general relativity implies that we may choose the lapse and
shift freely, without changing the physical solution g of the Einstein equation. The
only things to avoid are coordinate singularities, to which a arbitrary choice of lapse
and shift might lead.

5.4.2 Analysis Within Gaussian Normal Coordinates

To gain some insight in the nature of the system (5.68)–(5.79), let us simplify it by
using the freedom in the choice of lapse and shift: we set

N = 1 (5.80)

β = 0, (5.81)

in some neighbourhood of a given hypersurface Σ0 where the coordinates (xi) are
specified arbitrarily. This means that the lines of constant spatial coordinates are
orthogonal to the hypersurfaces Σt (see Fig. 5.1). Moreover, with N = 1, the coor-
dinate time t coincides with the proper time measured by the Eulerian observers
between neighbouring hypersurfaces Σt [cf. Eq. (4.17)]. Such coordinates are called
Gaussian normal coordinates. The foliation away from Σ0 selected by the choice
(5.80) of the lapse function is called a geodesic slicing . This name stems from
the fact that the worldlines of the Eulerian observers are geodesics, the parameter t
being then an affine parameter along them. This is immediate from Eq. (4.19), which,
for N = 1, implies the vanishing of the 4-accelerations of the Eulerian observers
(free fall).

In Gaussian normal coordinates, the spacetime metric tensor takes a simple form
[cf. Eq. (5.50)]:

gμvdxμdxv = −dt2 + γijdxidxj. (5.82)

In general it is not possible to get a Gaussian normal coordinate system that covers
all M . This results from the well known tendencies of timelike geodesics without
vorticity (such as the worldlines of the Eulerian observers) to focus and eventually
cross. This reflects the attractive nature of gravity and is best seen on the Raychaud-
huri equation (cf. Lemma 9.2.1 in [12]). However, for the purpose of the present
discussion it is sufficient to consider Gaussian normal coordinates in some neigh-
bourhood of the hypersurface Σ0; provided that the neighbourhood is small enough,
this is always possible. The 3+1 Einstein system (5.68)–(5.71) reduces then to
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∂γij

∂t
= −2Kij (5.83)

∂Kij

∂t
= Rij + KKij − 2KikKk

j + 4π
[
(S − E)γij − 2Sij

]
(5.84)

R + K2 − KijK
ij = 16πE (5.85)

DjK
j
i − DiK = 8πpi. (5.86)

Using the short-hand notation

γ̇ij := ∂γij

∂t
(5.87)

and replacing everywhere Kij thanks to Eq. (5.83), we get

−∂2γij

∂t2 = 2Rij + 1

2
γ klγ̇klγ̇ij − γ klγ̇ik γ̇lj + 8π

[
(S − E)γij − 2Sij

]
(5.88)

R + 1

4
(γ ijγ̇ij)

2 − 1

4
γ ikγ jlγ̇ijγ̇kl = 16πE (5.89)

Dj(γ
jk γ̇ki) − ∂

∂xi

(
γ klγ̇kl

)
= −16πpi. (5.90)

As far as the gravitational field is concerned, this equation contains only the
3-metric γ . In particular the Ricci tensor can be made explicit by plugging Eq. (5.79)
into Eq. (5.77). We need only the principal part for our analysis, that is the part
containing the derivative of γij of highest degree (two in the present case). We get,
denoting by “· · · ” everything but a second order derivative of γij:

Rij = ∂Γ k
ij

∂xk
− ∂Γ k

ik

∂xj
+ · · ·

= 1

2

∂

∂xk

[
γ kl

(
∂γlj

∂xi
+ ∂γil

∂xj
− ∂γij

∂xl

)]
− 1

2

∂

∂xj

[
γ kl

(
∂γlk

∂xi
+ ∂γil

∂xk
− ∂γik

∂xl

)]
+ · · ·

= 1

2
γ kl

(
∂2γlj

∂xk∂xi
+ ∂2γil

∂xk∂xj
− ∂2γij

∂xk∂xl
− ∂2γlk

∂xj∂xi
− ∂2γil

∂xj∂xk
+ ∂2γik

∂xj∂xl

)
+ · · ·

Rij = −1

2
γ kl

(
∂2γij

∂xk∂xl
+ ∂2γkl

∂xi∂xj
− ∂2γlj

∂xi∂xk
− ∂2γil

∂xj∂xk

)
+ Qij

(
γkl,

∂γkl

∂xm

)
, (5.91)

where Qij(γkl, ∂γkl/∂xm) is a (non-linear) expression containing the components γkl
and their first spatial derivatives only. Taking the trace of (5.91) (i.e. contracting with
γ ij), we get

R = γ ikγ jl ∂2γij

∂xk∂xl
− γ ijγ kl ∂2γij

∂xk∂xl
+ Q

(
γkl,

∂γkl

∂xm

)
. (5.92)
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Besides

Dj(γ
jk γ̇ki) = γ jkDjγ̇ki = γ jk

(
∂γ̇ki

∂xj
− Γ l

jk γ̇li − Γ l
jiγ̇kl

)

= γ jk ∂2γki

∂xj∂t
+ Qi

(
γkl,

∂γkl

∂xm
,
∂γkl

∂t

)
, (5.93)

where Qi(γkl, ∂γkl/∂xm, ∂γkl/∂t) is some expression that does not contain any
second order derivative of γkl. Substituting Eqs. (5.91), (5.92) and (5.93) in
Eqs. (5.88)–(5.90) gives

− ∂2γij

∂t2 + γ kl

(
∂2γij

∂xk∂xl
+ ∂2γkl

∂xi∂xj
− ∂2γlj

∂xi∂xk
− ∂2γil

∂xj∂xk

)

= 8π
[
(S − E)γij − 2Sij

] + Qij

(
γkl,

∂γkl

∂xm
,
∂γkl

∂t

)
(5.94)

γ ikγ jl ∂2γij

∂xk∂xl
− γ ijγ kl ∂2γij

∂xk∂xl
= 16πE + Q

(
γkl,

∂γkl

∂xm
,
∂γkl

∂t

)
(5.95)

γ jk ∂2γki

∂xj∂t
− γ kl ∂

2γkl

∂xi∂t
= −16πpi + Qi

(
γkl,

∂γkl

∂xm
,
∂γkl

∂t

)
. (5.96)

Notice that we have incorporated the first order time derivatives into the Q terms.
Equations (5.94)–(5.96) constitute a system of PDEs for the unknowns γij. This

system is of second order and non linear, but quasi-linear , i.e. linear with respect
to all the second order derivatives. Let us recall that, in this system, the γ ij’s are to
be considered as functions of the γij’s, these functions being given by expressing the
matrix (γij) as the inverse of the matrix (γij) (e.g. via Cramer’s rule).

A key feature of the system (5.94)–(5.96) is that it contains 6+1+3 = 10 equations
for the 6 unknowns γij. Hence it is an over-determined system. Among the three
sub-systems (5.94), (5.95) and (5.96), only the first one involves second-order time
derivatives. Moreover the sub-system (5.94) contains the same numbers of equations
than unknowns (six) and it is in a form tractable as a Cauchy problem, namely one
could search for a solution, given some initial data. More precisely, the sub-system
(5.94) being of second order and in the form

∂2γij

∂t2 = Fij

(
γkl,

∂γkl

∂xm
,
∂γkl

∂t
,

∂2γkl

∂xm∂xn

)
, (5.97)

the Cauchy problem amounts to finding a solution γij for t > 0 given the knowledge
of γij and ∂γij/∂t at t = 0, i.e. the values of γij and ∂γij/∂t on the hypersurface
Σ0. Since Fij is a analytical function,1 we can invoke the Cauchy–Kovalevskaya

1 It is polynomial in the derivatives of γkl and involves at most rational fractions in γkl (to get the
inverse metric γ kl).
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theorem (see e.g. [13]) to guarantee the existence and uniqueness of a solution γij in
a neighbourhood of Σ0, for any initial data (γij, ∂γij/∂t) on Σ0 that are analytical
functions of the coordinates (xi).

The complication arises because of the extra equations (5.95) and (5.96), which
must be fulfilled to ensure that the metric g reconstructed from γij via Eq. (5.82) is
indeed a solution of Einstein equation. Equations (5.95) and (5.96), which cannot
be put in the form such that the Cauchy–Kovalevskaya theorem applies, constitute
constraints for the Cauchy problem (5.94). In particular one has to make sure that the
initial data (γij, ∂γij/∂t) on Σ0 satisfy these constraints. A natural question which
arises is then: suppose that we prepare initial data (γij, ∂γij/∂t) which satisfy the
constraints (5.95)–(5.96) and that we get a solution of the Cauchy problem (5.94)
from these initial data, are the constraints satisfied by the solution for t > 0? The
answer is yes, thanks to the Bianchi identities, as we shall see in Sect. 11.3.2.

5.4.3 Constraint Equations

The main conclusions of the above discussion remain valid for the general 3+1
Einstein system as given by Eqs. (5.68)–(5.71): Eqs. (5.68) and (5.69) constitute a
time evolution system tractable as a Cauchy problem, whereas Eqs. (5.70) and (5.71)
constitute constraints. This partly justifies the names Hamiltonian constraint and
momentum constraint given respectively to Eq. (5.70) and to Eq. (5.71).

The existence of constraints is not specific to general relativity. For instance the
Maxwell equations for the electromagnetic field can be treated as a Cauchy problem
subject to the constraints D ·B = 0 and D ·E = ρ/ε0 [Eqs. (6.96)–(6.98) below]. We
refer the reader to [14] or Sect. 2.3 of [15] for details of the electromagnetic analogy.

5.4.4 Existence and Uniqueness of Solutions
to the Cauchy Problem

In the general case of arbitrary lapse and shift, the time derivative γ̇ij introduced
in Sect. 5.4.2 has to be replaced by the extrinsic curvature Kij, so that the initial
data on a given hypersurface Σ0 is (γ , K). The couple (γ , K) has to satisfy the
constraint equations (5.70) and (5.71) on Σ0. One may then ask the question: given
a set (Σ0, γ , K, E, p), where Σ0 is a three-dimensional manifold, γ a Riemannian
metric on Σ0, K a symmetric bilinear form field on Σ0, E a scalar field on Σ0 and
p a vector field on Σ0, which obeys the constraint equations (5.70) and (5.71):

R + K2 − KijK
ij = 16πE (5.98)

DjK
j
i − DiK = 8πpi, (5.99)
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does there exist a spacetime (M , g, T) such that (g, T) fulfills the Einstein equation
and Σ0 can be embedded as an hypersurface of M with induced metric γ and
extrinsic curvature K ?

Darmois [3] and Lichnerowicz [4] have shown that the answer is yes for the
vacuum case (E = 0 and pi = 0), when the initial data (γ , K) are analytical functions
of the coordinates (xi) on Σ0. Their analysis is based on the Cauchy–Kovalevskaya
theorem mentioned in Sect. 5.4.2 (cf. Chap. 10 of Wald’s textbook [12] for details).
However, on physical grounds, the analytical case is too restricted. One would like
to deal instead with smooth (i.e. differentiable) initial data. There are at least two
reasons for this:

• The smooth manifold structure of M imposes only that the change of coordinates
are differentiable, not necessarily analytical. Consequently if (γ , K) are analytical
functions of the coordinates, they might not be analytical functions of another
coordinate system (x′i).

• An analytical function is fully determined by its value and those of all its derivatives
at a single point. Equivalently an analytical function is fully determined by its
value in some small open domain D. This fits badly with causality requirements,
because a small change to the initial data, localized in a small region, should not
change the whole solution at all points of M . The change should take place only
in the so-called domain of dependence of D.

This is why the major breakthrough in the Cauchy problem of general relativity
has been achieved by Choquet-Bruhat in 1952 [16] when she showed existence and
uniqueness of the solution in a small neighbourhood of Σ0 for smooth (at least C5)
initial data (γ , K). We shall not give any sketch on the proof (beside the original
publication [16], see the review articles [17] and [18]) but simply mentioned that it
is based on harmonic coordinates.

A major improvement has been then the global existence and uniqueness theorem
by Choquet-Bruhat and Geroch [19]. The latter tells that among all the spacetimes
(M , g) solution of the Einstein equation and such that (Σ0, γ , K) is an embed-
ded Cauchy surface, there exists a maximal spacetime (M ∗, g∗) and it is unique.
Maximal means that any spacetime (M , g) solution of the Cauchy problem is iso-
metric to a subpart of (M ∗, g∗). For more details about the existence and uniqueness
of solutions to the Cauchy problem, see the reviews by Choquet-Bruhat and York
[18], Klainerman and Nicoló [20], Andersson [21] and Rendall [22], as well as
Choquet-Bruhat textbook [23].

5.5 ADM Hamiltonian Formulation

Further insight in the 3+1 Einstein equations is provided by the Hamiltonian for-
mulation of general relativity. Indeed the latter makes use of the 3+1 formalism,
since any Hamiltonian approach involves the concept of a physical state “at a certain
time”, which is translated in general relativity by the state on a spacelike hypersurface
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Σt . The Hamiltonian formulation of general relativity has been developed notably
by Dirac in the late fifties [24, 25] (see also Ref. [26]), by Arnowitt, Deser and
Misner (ADM) in the early sixties [7] and by Regge and Teitelboim in the seventies
[27]. Pedagogical presentations are given in Chap. 21 of MTW [28], in Chap. 4 of
Poisson’s book [29], in M. Henneaux’s lectures [30] and in G. Schäfer’s ones [31].
Here we focus on the ADM approach, which makes a direct use of the lapse function
and shift vector (contrary to Dirac’s one). For simplicity, we consider only the vac-
uum Einstein equation in this section. Also we shall disregard any boundary term in
the action integrals. Such terms will be restored in Chap. 8 in order to discuss total
energy and momentum.

5.5.1 3+1 Form of the Hilbert Action

Let us consider the standard Hilbert action for general relativity (see e.g. [32, 12]):

S =
∫
V

4R
√−g d4x, (5.100)

where V is a part of M delimited by two hypersurfaces Σt1 and Σt2 (t1 < t2) of the
foliation (Σt)t∈R:

V :=
t2⋃

t=t1

Σt . (5.101)

Thanks to the 3+1 decomposition of 4R provided by Eq. (4.49) and to the relation√−g = N
√

γ [Eq. (5.55)] we can write

S =
∫
V

[
N

(
R + K2 + KijK

ij
)

− 2LmK − 2DiD
iN

]√
γ d4x. (5.102)

Now

LmK = mμ∇μK = Nnμ∇μK = N
[∇μ(Knμ) − K ∇μnμ︸ ︷︷ ︸

−K

]

= N
[∇μ(Knμ) + K2].

Hence Eq. (5.102) becomes

S =
∫
V

[
N

(
R + KijK

ij − K2
)

− 2N∇μ(Knμ) − 2DiD
iN

]√
γ d4x.

But
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∫
V

N∇μ(Knμ)
√

γ d4x =
∫
V

∇μ(Knμ)
√−g d4x =

∫
V

∂

∂xμ

(√−gKnμ
)

d4x

is the integral of a pure divergence and we can disregard this term in the action.
Accordingly, the latter becomes

S =
∫ t2

t1

{∫
Σt

[
N

(
R + KijK

ij − K2
)

− 2DiD
iN

]√
γ d3x

}
dt,

where we have used (5.101) to split the four-dimensional integral into a time integral
and a three-dimensional one. Again we have a divergence term:

∫
Σt

DiD
iN

√
γ d3x =

∫
Σt

∂

∂xi

(√
γ DiN

)
d3x,

which we can disregard. Hence the 3+1 writing of the Hilbert action is

S =
∫ t2

t1

{∫
Σt

N
(

R + KijK
ij − K2

)√
γ d3x

}
dt . (5.103)

5.5.2 Hamiltonian Approach

The action (5.103) is to be considered as a functional of the “configuration” variables
q = (γij, N, β i) [which describe the full spacetime metric components gαβ, cf.
Eq. (5.49)] and their time derivatives2 q̇ = (γ̇ij, Ṅ, β̇ i): S = S[q, q̇]. In particular
Kij in Eq. (5.103) is the function of γ̇ij, γij, N and β i given by Eqs. (5.68) and (5.67):

Kij = 1

2N

(
γikDjβ

k + γjkDiβ
k − γ̇ij

)
. (5.104)

From Eq. (5.103), we read that the gravitational field Lagrangian density is

L(q, q̇) = N
√

γ (R + KijKij − K2) = N
√

γ
[
R + (γ ikγ jl − γ ijγ kl)KijKkl

]
,

(5.105)
with Kij and Kkl expressed as (5.104). Notice that this Lagrangian does not depend
upon the time derivatives of N and β i: this shows that the lapse function and the shift
vector are not dynamical variables. Consequently the only dynamical variable is γij.

The momentum canonically conjugate to it is

π ij := ∂L

∂γ̇ij
. (5.106)

2 we use the same notation as that defined by Eq. (5.87).
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From Eqs. (5.105) and (5.104), we get

π ij = N
√

γ
[
(γ ikγ jl − γ ijγ kl)Kkl + (γ kiγ lj − γ klγ ij)Kkl

]
×

(
− 1

2N

)
,

i.e.

π ij = √
γ

(
Kγ ij − Kij

)
. (5.107)

The Hamiltonian density is given by the Legendre transform

H = π ijγ̇ij − L. (5.108)

Using Eqs. (5.104), (5.107) and (5.105), we have

H = √
γ

(
Kγ ij − Kij

) (−2NKij + Diβj + Djβi
) − N

√
γ (R + KijK

ij − K2)

= √
γ

[
−N(R + K2 − KijK

ij) + 2
(

Kγ j
i − Kj

i

)
Djβ

i
]

= −√
γ

[
N(R + K2 − KijK

ij) + 2β i
(

DiK − DjK
j
i

)]

+ 2
√

γ Dj

(
Kβ j − Kj

iβ
i
)

. (5.109)

The corresponding Hamiltonian is

H =
∫

Σt

H d3x. (5.110)

Noticing that the last term in Eq. (5.109) is a divergence and therefore does not
contribute to the integral, we get

H = −
∫

Σt

(
NC0 − 2β iCi

)√
γ d3x , (5.111)

where

C0 := R + K2 − KijK
ij, (5.112)

Ci := DjK
j
i − DiK (5.113)

are the left-hand sides of the constraint equations (5.70) and (5.71) respectively.
The quantity H defined by (5.111) is called the ADM Hamiltonian; it is a

functional of the configuration variables (γij, N, β i) and their conjugate momenta

(π ij, πN , π
β
i ), the last two ones being identically zero since
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πN := ∂L

∂Ṅ
= 0 and π

β
i := ∂L

∂β̇ i
= 0. (5.114)

The scalar curvature R which appears in H via C0 is a function of γij and its spatial
derivatives, via Eqs. (5.77)–(5.79), whereas Kij which appears in both C0 and Ci is a
function of γij and π ij, obtained by “inverting” relation (5.107):

Kij = Kij[γ ,π ] = 1√
γ

(
1

2
γklπ

klγij − γikγjlπ
kl
)

. (5.115)

The minimization of the Hilbert action is equivalent to the Hamilton equations

δH

δπ ij
= γ̇ij (5.116)

δH

δγij
= −π̇ ij (5.117)

δH

δN
= −π̇N = 0 (5.118)

δH

δβ i
= −π̇

β
i = 0. (5.119)

Computing the functional derivatives from the expression (5.111) of H leads to the
equations

δH

δπ ij
= −2NKij + Diβj + Djβi = γ̇ij (5.120)

δH

δγij
= −π̇ ij (5.121)

δH

δN
= −C0 = 0 (5.122)

δH

δβ i
= 2Ci = 0. (5.123)

Equation (5.120) is nothing but the first equation of the 3+1 Einstein system (5.68)–
(5.71). We do not perform the computation of the variation (5.121) but the explicit
calculation (see e.g. Sect. 4.2.7 of Ref. [29]) yields an equation which is equivalent
to the dynamical Einstein equation (5.69). Finally, Eq. (5.122) is the Hamiltonian
constraint (5.70) with E = 0 (vacuum) and Eq. (5.123) is the momentum constraint
(5.71) with pi = 0.

Equations (5.122) and (5.123) show that in the ADM Hamiltonian approach,
the lapse function and the shift vector turn out to be Lagrange multipliers to enforce
respectively the Hamiltonian constraint and the momentum constraint, the true
dynamical variables being γij and π ij.
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Chapter 6
3+1 Equations for Matter
and Electromagnetic Field

Abstract We present the 3+1 treatment of fields other than the gravitational one,
describing the matter content of spacetime or the electromagnetic field. After deriv-
ing the general laws of energy conservation and momentum conservation from the
vanishing of the divergence of the stress-energy tensor, we focus on the particular
case of a perfect fluid. We introduce the basic quantities describing the fluid from the
point of view of the Eulerian observer and derive the 3+1 versions of the laws of con-
servation of baryon number and of energy, as well as the relativistic Euler equation
for the fluid velocity with respect to the Eulerian observer. We also present the flux-
conservative form of these laws, which is at the basis of the so-called high-resolution
shock-capturing schemes in numerical relativity. The case of the electromagnetic
field is then contemplated. The Maxwell equations are written in 3+1 form, in terms
of the electric and magnetic fields, both measured by the Eulerian observer. The final
section deals with ideal magnetohydrodynamics. We present both the 3+1 MHD-
Euler equation and the system of MHD equations in flux-conservative form.

6.1 Introduction

After having considered mostly the left-hand side of Einstein equation, in this chapter
we focus on the right-hand side, namely on the matter represented by its stress-energy
tensor T. By “matter”, we actually mean any kind of non-gravitational field, which
is minimally coupled to gravity. This includes the electromagnetic field, which we
shall treat in Sect. 6.4. The matter obeys two types of equations. The first one is the
vanishing of the spacetime divergence of the stress-energy tensor1:

∇ · −→
T = 0 , (6.1)

1 Let us recall that the covariant divergence operator ∇· has been defined in Sect. 2.4.1 and that−→
T stands for the type-(1,1) tensor associated by metric duality to T, via Eq. (2.39). Accordingly,
in index notation, Eq. (6.1) would be written ∇μTμ

α = 0.

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 101
DOI: 10.1007/978-3-642-24525-1_6, © Springer-Verlag Berlin Heidelberg 2012
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which, thanks to the contracted Bianchi identity (2.79), is a consequence of Einstein
equation (5.1). The second type of equations are the field equations that must be
satisfied independently of the Einstein equation, for instance the Maxwell equations
for the electromagnetic field or the conservation of the baryon number.

After having established the general energy and momentum conservation laws
from the 3+1 decomposition of Eq. (6.1) (Sect. 6.2), we focus on the specific cases of
a perfect fluid (Sect. 6.3), an electromagnetic field (Sect. 6.4) and finally a conducting
fluid in the magnetohydrodynamics regime (Sect. 6.5). Other models of matter are
discussed in Refs. [1] (collisionless matter and scalar fields), [2] (scalar fields) or [3]
(collisionless matter, dissipative fluids).

6.2 Energy and Momentum Conservation

6.2.1 3+1 Decomposition of the 4-Dimensional Equation

Let us replace T in Eq. (6.1) by its 3+1 expression (5.14) in terms of the energy
density E, the momentum density p and the stress tensor S, all of them as measured
by the Eulerian observer. We get successively

∇μTμ
α = 0,

∇μ

(
Sμ

α + nμpα + pμnα + Enμnα

) = 0,

∇μSμ
α − Kpα + nμ∇μpα + ∇μpμnα − pμKμα − KEnα + EDα ln N

+ nμ∇μEnα = 0, (6.2)

where we have used Eq. (4.24) to express ∇n in terms of K and D ln N .

6.2.2 Energy Conservation

Let us project Eq. (6.2) along the normal to the hypersurfaces Σt, i.e. contract
Eq. (6.2) with nα. We get, since p, K and D ln N are all orthogonal to n:

nv∇μSμ
v + nμnv∇μpv − ∇μpμ + KE − nμ∇μE = 0. (6.3)

Now, since n · S = 0,

nv∇μSμ
v = −Sμ

v∇μnv = Sμ
v(K

v
μ + Dv ln Nnμ) = KμvSμv, (6.4)

where we have used again Eq. (4.24). Similarly

nμnv∇μpv = −pvnμ∇μnv = −pvDv ln N . (6.5)
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Besides, let us express the 4-dimensional divergence ∇μpμ is terms of the
3-dimensional one, Dμpμ. For any vector v tangent to Σt, like −→p , Eq. (3.68) gives

Dμvμ = γ ρ
μγ μ

σ ∇ρvσ = γ ρ
σ ∇ρvσ = (δρ

σ + nρnσ )∇ρvσ = ∇ρvρ − vσ nρ∇ρnσ

= ∇ρvρ − vσ Dσ ln N .

Hence the useful relation between the two divergences

∀v ∈ T (Σt), ∇ ·v = D·v + v · D ln N , (6.6)

or in terms of components,

∀v ∈ T (Σt), ∇μvμ = Div
i + viDi ln N . (6.7)

Applying this relation to v = p and taking into account Eqs. (6.4) and (6.5), Eq. (6.3)
becomes

LnE + D · −→p + 2−→p · D ln N − KE − KijS
ij = 0. (6.8)

Remark 6.1 We have written the derivative of E along n as a Lie derivative. E being
a scalar field, we have of course the alternative expressions

LnE = ∇nE = n · ∇E = nμ∇μE = nμ ∂E

∂xμ
= 〈∇E, n〉. (6.9)

LnE is the derivative of E with respect to the proper time of the Eulerian observers:
LnE = dE/dτ, for n is the 4-velocity of these observers. It is easy to let appear
the derivative with respect to the coordinate time t instead, thanks to the relation
n = N−1(∂ t − β) [cf. Eq. (5.29)]:

LnE = 1

N

(
∂

∂t
− Lβ

)
E.

Then

(
∂

∂t
− Lβ

)
E + N

(
D · −→p − KE − KijS

ij
)

+ 2−→p · DN = 0 , (6.10)

in components:

(
∂

∂t
− β i ∂

∂xi

)
E + N

(
Dip

i − KE − KijS
ij
)

+ 2piDiN = 0. (6.11)

This equation has been obtained by York in the seminal article [4].
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6.2.3 Newtonian Limit

As a check, let us consider the Newtonian limit of Eq. (6.10). For this purpose let us
assume that the gravitational field is weak and static. It is then always possible to
find a coordinate system (xα) = (x0 = ct, xi) such that the metric components take
the form (cf. Deruelle’s lectures [5])

gμvdxμdxv = − (1 + 2Φ) dt2 + (1 − 2Φ) fijdxidxj, (6.12)

whereΦ is the Newtonian gravitational potential (solution of Poisson equationΔΦ =
4πGρ) and fij are the components the flat Euclidean metric f in the 3-dimensional
space. For a weak gravitational field (Newtonian limit), |Φ| � 1 (in units where the
velocity of light is not one, this should read |Φ|/c2 � 1). Comparing Eq. (6.12)
with (5.50), we get N = √

1 + 2Φ 
 1 + Φ, β = 0 and γ = (1 − 2Φ)f . From Eq.
(5.68), we then obtain immediately that K = 0. To summarize:

Newtonian limit : N = 1 + Φ, β = 0, γ = (1 − 2Φ) f , K = 0, |Φ| � 1.

(6.13)
Notice that the Eulerian observer becomes a Galilean (inertial) observer for he is
non-rotating (cf. Remark 4.4, p. 62).

Taking into account the limits (6.13), Eq. (6.10) reduces to

∂E

∂t
+ D · −→p = −2−→p · DΦ. (6.14)

Let us denote by D̄ the Levi–Civita connection associated with the flat metric f .
Obviously DΦ = D̄Φ. On the other side, let us express the divergence D ·−→p in terms
of the divergence D̄·−→p . From Eq. (6.13), we have γ ij = (1−2Φ)−1f ij 
 (1+2Φ)f ij

as well as the relation
√

γ = √
(1 − 2Φ)3f 
 (1−3Φ)

√
f between the determinants

γ and f of respectively (γij) and (fij). Therefore, evaluating the divergence by means
of formula ( 2.65), we get

D · −→p = 1√
γ

∂

∂xi

(√
γ pi

)
= 1√

γ

∂

∂xi

(√
γ γ ijpj

)


 1

(1 − 3Φ)
√

f

∂

∂xi

[
(1 − 3Φ)

√
f (1 + 2Φ)f ijpj

]


 1
√

f

∂

∂xi

[
(1 − Φ)

√
f f ijpj

]


 1
√

f

∂

∂xi

(√
f f ijpj

)
− f ijpj

∂Φ

∂xi


 D̄ · −→p − −→p · D̄Φ. (6.15)

Consequently Eq. (6.14) becomes
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∂E

∂t
+ D̄ · −→p = −−→p · D̄Φ. (6.16)

This is the standard energy conservation relation in a Galilean frame with the source
term −−→p · D̄Φ. The latter constitutes the density of power provided to the system
by the gravitational field; this will be clear in the perfect fluid case, to be discussed
below.

Remark 6.2 In the left-hand side of Eq. (6.16), the quantity p plays the role of an
energy flux, whereas it had been defined in Sect. 5.12 as a momentum density. But
we have seen that both aspects are equivalent [Eq. (5.10)].

6.2.4 Momentum Conservation

Let us now project Eq. (6.2) onto Σt :

γ v
α∇μSμ

v − Kpα + γ v
αnμ∇μpv − Kαμpμ + EDα ln N = 0. (6.17)

Now, from relation (3.68),

DμSμ
α = γ ρ

μγ μ
σ γ v

α∇ρSσ
v = γ ρ

σ γ v
α∇ρSσ

v

= γ v
α(δρ

σ + nρnσ )∇ρSσ
v = γ v

α

(∇ρSρ
v − Sσ

v nρ∇ρnσ︸ ︷︷ ︸
Dσ ln N

)

= γ v
α∇μSμ

v − Sμ
αDμ ln N . (6.18)

Besides

γ v
αnμ∇μpv = N−1γ v

αmμ∇μpv = N−1γ v
α

(
Lmpv − pμ∇vmμ

)

= N−1Lmpα + Kαμpμ, (6.19)

where use has been made of Eqs. (4.36) and (4.26) to get the second line. In view of
Eqs. (6.18) and (6.19), Eq. (6.17) becomes

1

N
Lmpα + DμSμ

α + Sμ
αDμ ln N − Kpα + EDα ln N = 0

Using the property (5.63): Lm = ∂/∂t − Lβ , we obtain

(
∂

∂t
− Lβ

)
p + ND · −→

S + S · −→
D N − NKp + EDN = 0 , (6.20)

or in components
(

∂

∂t
− Lβ

)
pi + NDjS

j
i + SijD

jN − NKpi + EDiN = 0. (6.21)
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Again, this equation appears in York’s article [4]. Actually York’s version [his Eq.
(41)] contains an additional term, for it is written for the vector −→p dual to the linear
form p, and since Lmγ ij �= 0, this generates the extra term pjLmγ ij = 2NKijpj.

To take the Newtonian limit of Eq. (6.20), we shall consider not only Eq. (6.13),
which provides the Newtonian limit of the gravitational field, but in addition the
property

Newtonian limit : |Si
j| � E, (6.22)

which expresses that the matter is not relativistic. Then the Newtonian limit of (6.20)
is

∂p
∂t

+ D̄ · −→
S = −ED̄Φ. (6.23)

Note that in relating D · −→
S to D̄ · −→

S , there should appear derivatives of Φ, as in
Eq. (6.15), but thanks to property (6.22), these terms are negligible in front of ED̄Φ.

Equation (6.23) is the standard momentum conservation law, with −ED̄Φ being the
gravitational force density.

6.3 Perfect Fluid

6.3.1 Kinematics

The perfect fluid model of matter is based on a vector field u which is timelike
and unitary: u · u = −1. It gives the 4-velocity of the so-called fluid particles.
In addition the perfect fluid is characterized by an isotropic pressure in the fluid
frame. More precisely, the perfect fluid model is entirely defined by the following
stress-energy tensor:

T = (ρ + P)u ⊗ u + Pg , (6.24)

where ρ and P are two scalar fields, representing respectively the matter energy
density and the pressure, both measured in the fluid frame (i.e. by an observer who
is comoving with the fluid), and u is the 1-form associated to the 4-velocity u by the
metric tensor g [cf. Eq. (2.35)].

Let us consider a fluid element at point p ∈ Σt (cf. Fig. 6.1). Let τ be the Eulerian
observer’s proper time at p. At the coordinate time t+dt, the fluid element has moved
to the point q ∈ Σt+dt . The date τ + dτ attributed to the event q by the Eulerian
observer moving through p is given by the orthogonal projection q′ of q onto the
worldline of that observer. Indeed, let us recall that the space of simultaneous events
(local rest frame) for the Eulerian observer is the space orthogonal to his 4-velocity
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Fig. 6.1 Worldline L of a fluid element crossing the spacetime foliation (Σt)t∈R · u is the fluid
4-velocity and U = d�/dτ the relative velocity of the fluid with respect to the Eulerian observer,
whose 4-velocity is n. The vector U is tangent to Σt and enters in the orthogonal decomposition of
u with respect to Σt, via u = Γ (n + U). NB: contrary to what the figure might suggest, dτ > dτ0
(do not interpret the figure with the Euclidean metric but with the Lorentzian one !)

u, i.e. locally Σt (cf. Sect. 4.3.3). Let d� be the infinitesimal vector connecting q′ to
q. Let dτ0 be the increment of the fluid proper time between the events p and q. The
Lorentz factor of the fluid with respect to the Eulerian observer is defined as being
the proportionality factor Γ between the proper times dτ0 and dτ :

dτ =: Γ dτ0 . (6.25)

One has the triangle identity (cf. Fig. 6.1):

dτ0u = dτn + d�. (6.26)

Taking the scalar product with n yields

dτ0n · u = dτ n · n︸︷︷︸
−1

+ n · d�︸ ︷︷ ︸
0

, (6.27)

hence, using relation (6.25),

Γ = −n · u . (6.28)

From a pure geometrical point of view, the Lorentz factor is thus nothing but minus
the scalar product of the two 4-velocities, the fluid’s one and the Eulerian observer’s
one.

Remark 6.3 In the numerical relativity literature, Γ is often denoted W (cf. e.g.
[1, 2, 6, 7]).
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Using the components nα of n given by Eq. (5.37), Eq. (6.28) gives an expression
of the Lorentz factor in terms of the component u0 of u with respect to the coordinates
(t, xi):

Γ = Nu0. (6.29)

The fluid velocity relative to the Eulerian observer is defined as the quotient of
the displacement d� by the proper time dτ, both quantities being relative to the
Eulerian observer (cf. Fig. 6.1):

U := d�

dτ
. (6.30)

Notice that by construction, U is tangent to Σt . Dividing the identity (6.26) by dτ

and making use of Eq. (6.25) results in

u = Γ (n + U) . (6.31)

Since n · U = 0, the above writing constitutes the orthogonal 3+1 decomposition of
the fluid 4-velocity u. The normalization relation of the fluid 4-velocity, i.e. u · u =
−1, combined with Eq. (6.31), results in

−1 = Γ 2(n · n︸︷︷︸
−1

+2 n · U︸︷︷︸
0

+U · U), (6.32)

hence

Γ = (1 − U · U)−1/2 . (6.33)

Thus, in terms of the velocity U, the Lorentz factor is expressed by a formula identical
of that of special relativity, except of course that the scalar product in Eq. (6.33) is
to be taken with the (curved) metric γ , whereas in special relativity it is taken with
a flat metric.

It is worth to introduce another type of fluid velocity, namely the fluid
coordinate velocity defined by

v := dx
dt

, (6.34)

where dx is the displacement of the fluid worldline with respect to the line of constant
spatial coordinates (cf. Fig. 6.2). More precisely, if the fluid moves from the point p of
coordinates (t, xi) to the point q of coordinates (t +dt, xi +dxi), the fluid coordinate
velocity is defined as the vector tangent to Σt, the components of which are

Vi = dxi

dt
. (6.35)



6.3 Perfect Fluid 109

Fig. 6.2 Coordinate velocity v of the fluid defined as the ratio of the fluid displacement with respect
to the line of constant spatial coordinates to the coordinate time increment dt

Noticing that the components of the fluid 4-velocity are uα = dxα/dτ0, the above
formula can be written

Vi = ui

u0 . (6.36)

From the very definition of the shift vector (cf. Sect. 5.2.2), the drift of the coordinate
line xi = const from the Eulerian observer worldline between t and t+dt is the vector
dtβ. Hence we have (cf. Fig. 6.2)

d� = dtβ + dx. (6.37)

Dividing this relation by dτ, using Eqs. (6.30), (4.17) and (6.34) yields

U = 1

N
(v + β) . (6.38)

On this expression, it is clear that at the Newtonian limit as given by (6.13), U = v.

6.3.2 Baryon Number Conservation

In addition to ∇ · T = 0, the perfect fluid must obey to the law of baryon number
conservation:

∇ · jb = 0 , (6.39)

where jb is the baryon number 4-current, expressible in terms of the fluid 4-velocity
and the fluid proper baryon number density nb as
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jb = nbu . (6.40)

The baryon number density measured by the Eulerian observer is

Nb := −jb · n. (6.41)

Combining Eqs. (6.28) and (6.40), we get

Nb = Γ nb . (6.42)

This relation is easily interpretable by remembering that Nb and nb are volume
densities and invoking the Lorentz–FitzGerald “length contraction” in the direction
of motion.

The baryon number current measured by the Eulerian observer is given by the
orthogonal projection of jb onto Σt :

Jb := −→
γ (jb). (6.43)

Taking into account that −→
γ (u) = Γ U [Eq. (6.31)], we get the simple relation

Jb = NbU . (6.44)

Using the above formulæ, as well as the orthogonal decomposition (6.31) of u,

the baryon number conservation law (6.39) can be written

∇ · (nbu) = 0

⇒∇ · [nbΓ (n + U)] = 0

⇒∇ · [Nbn + NbU] = 0

⇒n · ∇Nb + Nb ∇ · n︸ ︷︷ ︸
−K

+∇ · (NbU) = 0 (6.45)

Since NbU ∈ T (Σt), we may use the divergence formula (6.6) and obtain

LnNb − KNb + D · (NbU) + NbU · D ln N = 0, (6.46)

where we have written n · ∇Nb = LnNb. Since n = N−1(∂ t − β) [Eq. (5.29)], we
may rewrite the above equation as

(
∂

∂t
− Lβ

)
Nb + D · (NNbU) − NKNb = 0 . (6.47)

Using Eq. (6.38), we can put this equation in an alternative form

∂

∂t
Nb + D · (Nbv) + Nb (D · β − NK) = 0. (6.48)



6.3 Perfect Fluid 111

6.3.3 Dynamical Quantities

The fluid energy density as measured by the Eulerian observer is given by formula
(5.4): E = T(n, n), with the stress-energy tensor (6.24). Hence E = (ρ + P)

(u · n)2 + Pg(n, n). Since u · n = −Γ [Eq. (6.28)] and g(n, n) = −1, we get

E = Γ 2(ρ + P) − P . (6.49)

Remark 6.4 For pressureless matter (dust), the above formula reduces to E = Γ 2ρ.

The reader familiar with the formula E = Γ mc2 may then be puzzled by the Γ 2

factor in (6.49). However he should remind that E is not an energy, but an energy per
unit volume: the extra Γ factor arises from “length contraction” in the direction of
motion.

Introducing the proper baryon density nb, one may decompose the proper energy
density ρ in terms of a proper rest-mass energy density ρ0 and an proper internal
energy εint as

ρ = ρ0 + εint, with ρ0 := mbnb, (6.50)

mb being a constant, namely the mean baryon rest mass (mb 
 1.66 × 10−27 kg).

Inserting the above relation into Eq. (6.49) and writing Γ 2ρ = Γρ + (Γ − 1)Γρ

leads to the following decomposition of E:

E = E0 + Ekin + Eint, (6.51)

with the rest-mass energy density

E0 := mbNb, (6.52)

the kinetic energy density

Ekin := (Γ − 1)E0 = (Γ − 1)mbNb, (6.53)

the internal energy density

Eint := Γ 2(εint + P) − P. (6.54)

The three quantities E0, Ekin and Eint are relative to the Eulerian observer.
At the Newtonian limit, we shall suppose that the fluid is not relativistic

[cf. (6.22)]:

P � ρ0, |εint| � ρ0, U2 := U · U � 1. (6.55)
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Then we get

Newtonian limit : Γ 
 1+ U2

2
, E 
 E+P 
 E0 
 ρ0, E−E0 
 1

2
ρ0U2+εint. (6.56)

The fluid momentum density as measured by the Eulerian observer is obtained
by applying formula (5.5):

p = −T(n,
−→
γ (.)) = −(ρ + P) 〈u, n〉

︸ ︷︷ ︸
−Γ

〈u,
−→
γ (.)〉

︸ ︷︷ ︸
Γ U

−P g(n,
−→
γ (.))

︸ ︷︷ ︸
0

= Γ 2(ρ + P)U,

where Eqs. (6.28) and (6.31) have been used to get the second line. Taking into
account Eq. (6.49), the above relation becomes

p = (E + P)U . (6.57)

Finally, by applying formula (5.11), we get the fluid stress tensor with respect to
the Eulerian observer:

S = −→
γ

∗
T = (ρ + P)

−→
γ

∗
u

︸ ︷︷ ︸
Γ U

⊗ −→
γ

∗
u

︸ ︷︷ ︸
Γ U

+P −→
γ

∗
g

︸︷︷︸
γ

= Pγ + Γ 2(ρ + P)U ⊗ U,

or, taking into account Eq. (6.49),

S = Pγ + (E + P)U ⊗ U . (6.58)

6.3.4 Energy Conservation Law

By means of Eqs. (6.57) and (6.58), the energy conservation law (6.10) becomes

(
∂

∂t
− Lβ

)
E + N{D · [(E + P)U] − (E + P)(K + KijU

iUj)}
+ 2(E + P)U · DN = 0.

(6.59)

To take the Newtonian limit, we may combine the Newtonian limit of the baryon
number conservation law (6.47) with Eq. (6.16) to get

∂E′

∂t
+ D̄ · [(E′ + P)U] = −U · (ρ0D̄Φ), (6.60)
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where E′ := E − E0 = Ekin + Eint and we clearly recognize in the right-hand side
the power provided to a unit volume fluid element by the gravitational force.

6.3.5 Relativistic Euler Equation

Injecting the expressions (6.57) and (6.58) into the momentum conservation law
(6.20), we get

(
∂

∂t
− Lβ

)
[(E + P)Ui] + NDj

[
Pδj

i + (E + P)UjUi

]

+ [
Pγij + (E + P)UiUj

]
DjN − NK(E + P)Ui + EDiN = 0.

Expanding and making use of Eq. (6.59) yields

(
∂

∂t
− Lβ

)
Ui + NUjDjUi − UjDjNUi + DiN + NKklU

kUlUi

+ 1

E + P

[
NDiP + Ui

(
∂

∂t
− Lβ

)
P

]
= 0.

Now, from Eq. (6.38), NUjDjUi = VjDjUi +β jDjUi, so that −LβUi +NUjDjUi =
VjDjUi − UjDiβ

j [cf. Eq. (2.91)]. Hence the above equation can be written

∂Ui

∂t
+ VjDjUi = − 1

E + P

[
NDiP + Ui

(
∂P

∂t
− β j ∂P

∂xj

)]
+ UjDiβ

j

− DiN + UiU
j
(

DjN − NKjkUk
)

.

(6.61)

The Newtonian limit of this equation is [cf. Eqs. (6.13) and (6.56)]

∂Ui

∂t
+ UjD̄jUi = − 1

ρ0
D̄iP − D̄iΦ, (6.62)

i.e. the standard Euler equation in presence of a gravitational field of potential Φ.

Remark 6.5 Usually the general relativistic Euler equation is written in terms of
the momentum density p, i.e. as (6.20) with p = (E + P)U [Eq. (6.57)]. We have
written it here in terms of the fluid velocity with respect to the Eulerian observer,
U, appealing to the energy conservation law (6.59) to simplify some terms. In this
way, the relativistic Euler equation takes a shape which is closer to its Newtonian
counterpart (6.62). The version (6.61) has been exhibited in [8] for the particular case
of spherically symmetric spacetimes. A form equivalent to (6.61) has been obtained
in a tetrad formalism by Salgado [9]. See also [10] for the special relativistic limit.
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6.3.6 Flux-Conservative Form

The flux-conservative form of the relativistic hydrodynamics equations is [6, 11]

∂UA

∂t
+ ∂

∂xj
F

j
A = SA , 0 ≤ A ≤ 4, (6.63)

where (i) UA is the state vector, defined by [cf. Eqs. (6.42), (6.57), (6.49) and (6.52)]

U0 := √
γNb = √

γΓ nb (6.64a)

Ui := √
γ pi = √

γ (E + P)Ui = √
γΓ 2(ρ + P)Ui, 1 ≤ i ≤ 3 (6.64b)

U4 := √
γ (E − E0) = √

γ
[
Γ 2(ρ + P) − P − Γ mbnb

]
, (6.64c)

(ii) (F
j
A)1≤j≤3 are the components of the Ath flux vector and (iii) SA is the

source vector.F i
A and SA will be made explicit below. The form (6.63) is clearly that

of a conservation law in flat spacetime with Cartesian coordinates. This form is at the
basis of the so-called high-resolution shock-capturing (HRSC) schemes introduced
in numerical relativity by Martí et al. in 1991 [12] (spherically symmetric case) and
Banuyls et al. in 1997 [13] (3D case). HRSC schemes are the most powerful numer-
ical methods to date (see [6] for a review). They are devised from Godunov’s idea
[14] to reduce the problem of numerical integration of the hydrodynamics equation
to local Riemann shock tube problems.

To show that the 3+1 relativistic hydrodynamics equations presented above can
indeed be recast as (6.63), let us start from the baryon number conservation law
(6.48). We shall first transform the term D · β − NK which appears in this equation
as follows. By taking the trace of Eq. (5.68) with Lβγij expressed via Eq. (5.67), we
obtain

γ ij
(

∂γij

∂t
− Diβj − Djβi

)
= −2N γ ijKij︸ ︷︷ ︸

K

,

i.e.

Djβ
j − NK = 1

2
γ ij ∂γij

∂t
. (6.65)

Recalling that (γ ij) is the inverse matrix of (γij), the general rule (2.64) for the
variation of a determinant yields the useful relation

D · β − NK = 1√
γ

∂
√

γ

∂t
. (6.66)

On the other side, by means of the divergence formula (2.65), we have
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D · (Nbv) = 1√
γ

∂

∂xj

(√
γNbVj

)
.

Accordingly, the baryon number conservation law (6.48) can be written

∂D

∂t
+ ∂

∂xj

(
DVj

)
= 0 , (6.67)

with

D := √
γNb = √

γΓ nb. (6.68)

The form (6.67), although fully relativistic, is identical to the continuity equation
in Newtonian physics. The price to pay is that this equation is not covariant, for D
is not a scalar field independent of the coordinates (xi), contrary to Nb (recall that
the determinant γ which relates D to Nb does depend on the coordinates). Equation
(6.67) was first exhibited by Wilson [15, 16].

Let us now turn to the momentum conservation equation. For our purpose, it
is more convenient to start from the general form (6.21) than from the Euler form
(6.61). Expressing the Lie derivative in (6.21) according to Lβpi = β jDjpi +pjDiβ

j

[formula (2.92) with (k, �) = (0, 1) and ∇ = D ], we get

∂pi

∂t
+ Dj(NSj

i − β jpi) + (Djβ
j − NK)pi = pjDiβ

j − EDiN . (6.69)

Again, we can use (6.66) to replace Djβ
j −NK . In addition, for any type-(1, 1) tensor

Q, formulas (2.54) and (2.63) lead to:

DjQ
j
i = ∂

∂xj
Qj

i + Γ j
kj︸︷︷︸

∂

∂xk ln
√

γ

Qk
i − Γ k

ijQ
j
k = 1√

γ

∂

∂xj

(√
γ Qj

i

)
− Γ k

ijQ
j
k .

Accordingly, Eq. (6.69) becomes

∂

∂t

(√
γ pi

)+ ∂

∂xj

[√
γ
(

NSj
i − β jpi

)]
= √

γ
[
pjDiβ

j − EDiN

+ Γ k
ij

(
NSj

k − β jpk

)]
.

(6.70)

In the case of a perfect fluid, we have from Eqs. (6.58), (6.57) and (6.38)

NSj
i − β jpi = NPδj

i + NUjpi − β jpi = NPδj
i + Vjpi.

Hence the general law (6.70) becomes

∂

∂t

(√
γ pi

)+ ∂

∂xj

[√
γ
(

NPδj
i + Vjpi

)]
= √

γ
[
pjDiβ

j − EDiN

+Γ k
ij

(
NPδj

k + Vjpk

)]
.

(6.71)
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Finally let us consider the energy conservation law, in the general form (6.10).
Writing LβE = β jDjE = Dj(Eβ j) − EDjβ

j, we get

∂E

∂t
+ Dj(Npj − Eβ j) + E(Djβ

j − NK) = NKjkSjk − pjDjN .

Using the identities (2.65) and (6.66), this equation can be recast as

∂

∂t

(√
γ E
)+ ∂

∂xj

[√
γ (Npj − Eβ j)

]
= √

γ
(

NKjkSjk − pjDjN
)

. (6.72)

In the special case of a perfect fluid, Eqs. (6.57), (6.38) and (6.58) yield

Npj − Eβ j = EVj + NPUj

NKjkSjk − pjDjN = N
[
KP + pj(KjkUk − DjlnN)

]
.

Moreover, noticing that
√

γ E0 = mbD [cf. Eqs. (6.52) and (6.68)], we may combine
Eq. (6.72) with (6.67) to write

∂

∂t

[√
γ (E − E0)

]+ ∂

∂xj

{√
γ
[
(E − E0)V

j + NPUj
]}

= √
γ N

[
KP + pj(KjkUk − Dj ln N)

]
.

(6.73)

Collecting Eqs. (6.67), (6.71) and (6.73), we have proved that the equations of 3+1
hydrodynamics can be put in the form (6.63) with the state vector defined by (6.64),
the flux vectors

F
j
0 = DVj (6.74a)

F
j
i = √

γ
[
NPδj

i + piV
j
]
, 1 ≤ i ≤ 3 (6.74b)

F
j
4 = √

γ
[
(E − E0)V

j + NPUj
]

(6.74c)

and the source vector

S0 = 0 (6.75a)

Si = √
γ
{

pjDiβ
j − EDiN + Γ k

ij

[
NPδj

k + pkVj
]}

, 1 ≤ i ≤ 3 (6.75b)

S4 = √
γ N

[
KP + pj(KjkUk − Dj ln N)

]
. (6.75c)

Note that the source vector does not involve any derivative of the matter
quantities.
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Remark 6.6 The source vector SA is very often presented in terms of 4-dimensional
quantities, i.e. the components Tαβ of the stress-energy tensor and the Christoffel
symbols 4Γ α

βγ of the 4-metric g (e.g. [1, 6, 7, 13]; an exception is [2]). We have

written it in terms of 3+1 quantities only; in particular in Eq. (6.75b), the Γ k
ij’s are

the Christoffel symbols of the 3-metric γ [cf. Eq. (5.79)].

All modern codes for general relativistic hydrodynamics are using HRSC schemes
and hence are based on the flux-conservative form (6.63); this regards the codes
Whisky [17–19], SACRA [20] (see [21] for a comparison between Whisky and
SACRA), Shibata’s code [22], CoCoNuT [23], SpEC [24, 25] and BAM-GRHD
[26] (see [6] or [27] for a more complete list of codes).

6.3.7 Further Developments

For further developments in 3+1 relativistic hydrodynamics, we refer to the review
article by Font [6]. One may recommend also the reading of Chap. 7 of Alcubierre’s
book [7] for the hyperbolicity analysis and the determination of the speed of sound.
As a final remark, let us point out that the 3+1 decomposition presented above is
definitively well adapted to the numerical integration but is not very convenient for
discussing conservation laws, such as the relativistic generalizations of Bernoulli’s
theorem or Kelvin’s circulation theorem. For this purpose the Carter–Lichnerowicz
approach, which is based on exterior calculus (cf. Remark 2.16), is much more
powerful, as discussed in Ref. [28].

6.4 Electromagnetism

6.4.1 Electromagnetic Field

The electromagnetic field is represented by a 2-form F in the spacetime (M , g), i.e.
by a valence-2 tensor field that is twice covariant and antisymmetric (cf. Sect. 2.2.5).
In other words, at every point p ∈ M , F is an antisymmetric bilinear form on the
tangent space Tp(M ). F is sometimes called the Faraday tensor [29]. The physical
interpretation of F relies on the Lorentz force: a particle of rest mass m, electric
charge q and 4-velocity u is subject to the 4-acceleration ∇uu obeying

m∇uu = qF(., u). (6.76)

Of course, if q = 0, this equation reduces to ∇uu = 0, which implies that the particle
follows a spacetime geodesic.

The electric field and the magnetic field measured by the Eulerian observer are
respectively the vector field E and the vector field B defined in terms of F and the
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4-velocity n of the Eulerian observer according to the formulas

E = F(., n) (6.77a)
B = �F(n, .). (6.77b)

In the second formula, �F is the Hodge dual of F, i.e. the 2-form defined by

�Fαβ := 1

2
4ε

μv
αβFμv, (6.78)

where 4ε is the spacetime Levi–Civita tensor (cf. Sect. 2.3.4). We assume indeed that
the spacetime M is an orientable manifold and that we have chosen some orientation
(cf. Sect. 2.3.4). The Levi–Civita tensor 4ε is such that for any g-orthonormal basis
(eα),

4ε(e0, e1, e2, e3) = ±1 (6.79)

[cf. Eq. (2.43)].
By construction, since F(n, n) = 0 and �F(n, n) = 0,

n · E = 0 and n · B = 0, (6.80)

i.e. the vectors E and B are tangent to the hypersurfaces Σt .

From the knowledge of n, E and B, we can reconstruct the electromagnetic field
tensor according to

F = n ⊗ E − E ⊗ n + 4ε(n, B, ., .) , (6.81)

or in index notation,

Fαβ = nαEβ − Eαnβ + 4εμvαβnμBv. (6.82)

Actually (6.81) is the unique 3+1 decomposition of an antisymmetric rank-2 tensor,
as (5.14) was the unique 3+1 decomposition of a symmetric rank-2 tensor.

Remark 6.7 The electric field E has been defined here as a vector, whereas it would
have been more natural to define it as a linear form: this explains why an underbar
(metric duality) appears under E in Eq. (6.81). On the contrary, the magnetic field is
naturally a vector, hence the absence of underbar on B in Eq. (6.81). In the context of
the 3+1 formalism, we have however preferred the “vector” definition for E. Among
other things, it puts E on the same footing as B.

The 3+1 decomposition of the Hodge dual �F is

�F = −n ⊗ B + B ⊗ n + 4ε(n, E, ., .). (6.83)

Note that it can deduced from (6.81) by replacing E by −B and B by E. It is easy to
establish (6.83) by plugging (6.82) into the definition (6.78) and using the identity
(see e.g. Appendix B of [30])

4ε
μvαβ4εμvκλ = −2

(
δα

κδβ
λ − δβ

κδα
λ

)
.
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6.4.2 3+1 Maxwell Equations

The electromagnetic field F is ruled by Maxwell equations; they are best expressed
in terms of the exterior derivative operator d mentioned in Remark 2.16 (see e.g.
[10]). However, for the purpose of the 3+1 formalism, we shall express them in
terms of divergence with respect to the spacetime connection ∇ [cf. Eq. (2.58)]. The
Maxwell equations are then

∇ · �
�
F = 0 (6.84a)

∇ · �
F = μ0 j , (6.84b)

where �
�
F and

�
F are the twice-contravariant tensor fields associated to �F and F,

respectively, by metric duality [cf. Eq. (2.40)], the constant μ0 is the magnetic per-
meability of vacuum and the vector field j is the electric 4-current. In term of
components, Eqs. (6.84a) and (6.84b) are written (cf. Remark 2.12)

∇μ � Fαμ = 0 (6.85a)

∇μFαμ = μ0jα. (6.85b)

The 3+1 decomposition of j is

j = ρen + J, with n · J = 0. (6.86)

The scalar field ρe is the electric charge density with respect to the Eulerian observer
and is given by

ρe = −n · j. (6.87)

The vector J, tangent to Σt, is the electric current measured by the Eulerian
observer; it is nothing but the orthogonal projection of j onto Σt :

J = −→
γ ( j). (6.88)

Let us perform the 3+1 split of the source-free Maxwell equation (6.84a). Replac-
ing �F by its 3+1 expression (6.83), we may write it as

∇μ

(
−nαBμ + Bαnμ + 4ε

ρσαμ
nρEσ

)
= 0. (6.89)

Let us compute separately the B and E terms. We have

∇μ

(−nαBμ + Bαnμ
) = nμ∇μBα − Bμ∇μnα

︸ ︷︷ ︸
LnBα

−∇μBμnα + ∇μnμ

︸ ︷︷ ︸
−K

Bα,
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where we have let appear the Lie derivative of B along n [cf. Eq. (2.89)] and have
expressed the divergence of n in terms of the trace of the extrinsic curvature tensor
[Eq. (3.66)]. Introducing the normal evolution vector m = Nn [Eq. (4.9)], we can
write

LnBα = 1

N

(
LmBα + Bμ∇μNnα

)
,

so that

∇μ

(−nαBμ + Bαnμ
) = 1

N
LmBα − KBα − (∇μBμ − BμDμ ln N)nα

= 1

N
LmBα − KBα − DμBμnα, (6.90)

where we have used the identity Bμ∇μN = BμDμN (B being tangent to Σt) and the
property (6.6). Let us now turn to the second part in (6.89). Thanks to the vanishing of
the covariant derivative of the Levi–Civita tensor [property (2.61)], it can be written

∇μ

(
4ε

ρσαμ
nρEσ

)
= 4ε

ρσαμ∇μnρEσ + 4ε
ρσαμ

nρ∇μEσ

= −(4ε
ρσαμ

Kμρ︸ ︷︷ ︸
0

+4ε
ρσαμ

Dρ ln Nnμ)Eσ + 4ε
ρσαμ

nρ∇μEσ

= −4ε
ρσαμ

Dρ ln NnμEσ + 4ε
ρσαμ

nρ∇μEσ , (6.91)

where use has been made of (4.24) and the vanishing of 4ε
ρσαμ

Kμρ stems from the
fact that 4ε is antisymmetric whereas K is symmetric. Now

4ε
ρσαμ

nρ∇μEσ = 4ε
ρσαμ

nρ(∇E)σμ = 4ε
ρσαμ

nρ(
−→
γ

∗∇E)σμ,

since any part of ∇E along n is annihilated by 4ε
ρσαμ

nρ, due to the alternate character
of 4ε

ρσαμ
. Thanks to (3.67), −→

γ
∗∇E = DE, so that

4ε
ρσαμ

nρ∇μEσ = 4ε
ρσαμ

nρDμEσ = 4ε
μσαρ

nμDρEσ = 4ε
μαρσ

nμDρEσ .

Accordingly, Eq.(6.91) becomes (noticing that −4ε
ρσαμ = 4ε

μαρσ
)

∇μ

(
4ε

ρσαμ
nρEσ

)
= 1

N
nμ

4ε
μαρσ

Dρ(NEσ ). (6.92)

In this relation appears the Levi–Civita tensor ε of the Riemannian manifold (Σt, γ ),

with the orientation induced by that of M :

ε = 4ε(n, ., ., .). (6.93)

Indeed the above relation defines a 3-form and if (ei) is an orthonormal basis of
(Σt, γ ), then (n, ei) is an orthonormal basis of (M , g), so that (6.79) implies
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ε(e1, e2, e3) = 4ε(n, e1, e2, e3) = ±1.

The above relation shows that ε is indeed the Levi–Civita tensor of (Σt, γ ) (cf.
Sect. 2.3.4). We thus rewrite Eq. (6.92) as

∇μ

(
4ε

ρσαμ
nρEσ

)
= 1

N
εαρσ Dρ(NEσ ). (6.94)

Collecting the results (6.90) and (6.94), the first Maxwell equation (6.89) becomes

LmBα − NKBα + εαρσ Dρ(NEσ ) − NDμBμnα = 0. (6.95)

It is easy to decompose this vectorial equation into a part along n and a part tangent
to Σt . Indeed, B being tangent to Σt, so is LmB thanks to the property (4.12).
We thus conclude that (i) the part of the first Maxwell equation along n is simply
−NDμBμnα = 0, i.e.

DiB
i = 0 (6.96)

and (ii) the orthogonal projection of the first Maxwell equation onto Σt is

LmBα − NKBα + εαρσ Dρ(NEσ ) = 0.

This equation involving only space tensors, we may replace the Greek indices by
Latin ones. Moreover, we may use (5.63) to replace Lm by ∂/∂t − Lβ , thereby
getting

(
∂

∂t
− Lβ

)
Bi − NKBi + εijkDj(NEk) = 0 . (6.97)

This is the 3+1 Maxwell-Faraday equation.

We may now proceed straightforwardly to the 3+1 decomposition of the Maxwell
equation with source, Eq. (6.84b), since (i) it merely differs from the Maxwell equa-
tion (6.84a) by the non-vanishing right-hand side and the replacement of �F by F and
(ii) we have already noticed that one goes from �F to F by replacing E by B and B
by −E [cf. Eqs. (6.82) and (6.83)]. Performing these substitutions in Eq. (6.95) and
making use of (6.86) we obtain the 3+1 writing of the Maxwell equation (6.84b):

−LmEα + NKEα + εαρσ Dρ(NBσ ) + NDμEμnα = μ0N(ρenα + Jα).

This equation can be split into a part along n:

DiE
i = μ0ρe (6.98)

and a part tangent to Σt :
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(
∂

∂t
− Lβ

)
Ei − NKEi − εijkDj(NBk) = −μ0NJi . (6.99)

Equations (6.98) and (6.99) are called respectively the 3+1 Maxwell–Gauss and
3+1 Maxwell–Ampère equations. The 3+1 Maxwell equations (6.96)–(6.99) have
been exhibited by Thorne and Macdonald in 1982 [31] (see also [32] and [33]).

In the flat spacetime limit, with the Eulerian observer chosen to be inertial (N =
1, β = 0 and K = 0), Eqs. (6.96)–(6.99) reduce to the standard Maxwell equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DiBi = 0

εijkDjEk = − ∂Bi

∂t
DiEi = μ0ρe

εijkDjBk = μ0Ji + ∂Ei

∂t .

(
inertial frame in

Minkowski spacetime

)

6.4.3 Electromagnetic Energy, Momentum and Stress

The stress-energy tensor of the electromagnetic field is given by the formula [34]

Tαβ = 1

μ0

(
FμαFμ

β − 1

4
FμvFμv gαβ

)
. (6.100)

Substituting the 3+1 expression (6.82) for Fαβ, expanding and making use of the
identity (see e.g. Appendix B of [30])

4εμαβγ
4ε

μρστ = − δρ
αδσ

βδτ
γ + δρ

αδτ
βδσ

γ − δσ
αδτ

βδρ
γ + δσ

αδρ
βδτ

γ

− δτ
αδρ

βδσ
γ + δτ

αδσ
βδρ

γ ,

we obtain the 3+1 form (5.14) for T with

• the energy density2

E = 1

2μ0
(E · E + B · B) (6.101)

• the momentum density

p = 1

μ0
ε(., E, B) (6.102)

• the stress tensor

2 Do not confuse E (the energy density measured by the Eulerian observer) with E (the electric
field measured by the same observer).
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S = 1

μ0

[
1

2
(E · E + B · B)γ − E ⊗ E − B ⊗ B

]
. (6.103)

All the above quantities are relative to the Eulerian observer. Remembering that the
energy flux 1-form is equal to the momentum density [Eq. (5.10)], we recognize in
Eq. (6.102) the classical expression for the Poynting vector.3

Remark 6.8 Evaluating the trace of T via formula (5.15), we get

T = S − E = 1

μ0

[
1

2
(E · E + B · B) × 3 − E · E − B · B − 1

2
(E · E + B · B)

]
= 0.

We recover a well-known property of the electromagnetic stress-energy tensor, which
is obvious on the 4-dimensional expression (6.100): its trace is vanishing.

Remark 6.9 Expressed in terms of (E, B), the energy density (6.101), the Poynting
vector (6.102) and the stress tensor (6.103) of the electromagnetic field have exactly
the same expressions than in special relativity. There is no additional terms from
spacetime curvature as in the Maxwell equations (6.96)–(6.99).

6.5 3+1 Ideal Magnetohydrodynamics

6.5.1 Basic Settings

The ideal magnetohydrodynamics (ideal MHD) model consists of an electromag-
netic field and a perfect fluid of infinite electric conductivity. Via Ohm’s law, the
latter property implies that the electric field vanishes in the fluid frame. The electric
and magnetic fields in the fluid frame are defined by formulas analogous to (6.77a)
and (6.77b), by replacing n by the fluid 4-velocity u:

e = F(., u) and b = �F(u, .). (6.104)

The ideal MHD condition is thus
e = 0. (6.105)

Consequently the formulas equivalent to (6.81) and (6.83) simplify to

F = 4ε(u, b, ., .) (6.106a)

�F = b ⊗ u − u ⊗ b. (6.106b)

In other words, in the ideal MHD approximation, the electromagnetic field tensor F
is entirely determined by the fluid 4-velocity u and a vector field b that is orthogonal
to u. Physically b is the magnetic field in the fluid frame.

3 More precisely, the Poynting vector is −→p , i.e. the metric dual of the 1-form p.
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The magnetic field with respect to the Eulerian observer is obtained by substituting
expression (6.106b) for �F into Eq. (6.77b):

B = �F(n, .) = (b · n)u − (u · n︸︷︷︸
−Γ

)b,

where we have let appear the Lorentz factor of the fluid with respect to the Eulerian
observer [cf. Eq. (6.28)]. Hence

B = Γ b + (n · b)u. (6.107)

Let us take the scalar product of this relation with u and use the property u · b = 0,

as well as the 3+1 decomposition of u, Eq. (6.31). We get

u · B︸︷︷︸
Γ U·B

= Γ u · b︸︷︷︸
0

+(n · b) u · u︸︷︷︸
−1

.

Hence

n · b = −Γ U · B.

Using again Eq. (6.31), we may then rewrite (6.107) as

b = Γ (U · B)n + Γ −1B + Γ (U · B)U. (6.108)

This constitutes the 3+1 decomposition of b, since the vectors B and U are tangent
to Σt .

The electric field with respect to the Eulerian observer is obtained by substituting
expression (6.106a) for F into Eq. (6.77a):

E = F(., n) = 4ε(u, b, ., n) = 4ε(n, b, u, .) = 4ε
(

n, Γ −1B − Γ −1(n · b)u, u, .
)

= (Γ −1)4ε(n, B, u, .) = 4ε(n, B, n + U, .) = 4ε(n, B, U, .), (6.109)

where we have used Eqs. (6.107) and (6.31), as well as the alternate character of 4ε.

We recognize in 4ε(n, ., ., .) the Levi–Civita tensor of (Σt, γ ), ε [cf. Eq. (6.93)], so
we can write

E = ε(., B, U) , (6.110)

or, in terms of components,

Ei = εijkBjUk . (6.111)

Hence in ideal MHD and with respect to the Eulerian observer, the electric field is
fully determined by the magnetic field and the fluid velocity.
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Remark 6.10 The cross product of two vectors a and b tangent to Σt is defined via
the Levi–Civita tensor ε as

a × b := c with c = ε(., a, b). (6.112)

Accordingly, Eq. (6.110) can be rewritten in the more familiar form

E = −U × B. (6.113)

6.5.2 Maxwell Equations

Let us substitute expression (6.110) for E in the Maxwell–Faraday equation (6.97):

(
∂

∂t
− Lβ

)
Bi − NKBi + εijkDj(NεklmBlUm) = 0.

Since ε and D are respectively the Levi–Civita tensor and the covariant derivative
associated with the metric γ , we have Djεklm = 0 [cf. Eq. (2.61)], so that we may
write

(
∂

∂t
− Lβ

)
Bi − NKBi + εijkεklmDj(NBlUm) = 0.

Using the identity

εkijεklm = δi
lδ

j
m − δj

lδ
i
m, (6.114)

as well as the expression of the Lie derivative LβBi in terms of the connection D
[cf. formula (2.89)], we get

∂Bi

∂t
− β jDjB

i + BjDjβ
i − NKBi + Dj(NBiUj) − Dj(NBjUi) = 0.

Now, from Eq. (6.38), NUi = Vi + β i, where Vi are the components of the fluid
coordinate velocity. Accordingly, the above equation becomes, after simplification,

∂Bi

∂t
+ (Djβ

j − NK)Bi + Dj(B
iVj − ViBj) = 0. (6.115)

Note that we have used the Maxwell equation (6.96) to get rid of the term DjBjβ i.

Equation (6.115) is the MHD version of the Maxwell–Faraday equation (6.97) written
in covariant form, in terms of the Levi–Civita connection D of (Σt, γ ). It can be given
a simpler form in terms of the partial derivatives with respect to the coordinates (xi)
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on Σt : let us express the last term in Eq. (6.115) via the general formula (2.66) for
the divergence of an antisymmetric tensor:

Dj(B
iVj − ViBj) = 1√

γ

∂

∂xj

[√
γ (BiVj − ViBj)

]

and make use of (6.66) to replace Djβ
j − NK . We hence put Eq. (6.115) in the form

∂

∂t

(√
γ Bi

)
+ ∂

∂xj

[√
γ (BiVj − ViBj)

]
= 0.

This suggests to introduce the quantity

Bi := √
γ Bi , (6.116)

to write

∂Bi

∂t
+ ∂

∂xj

(
BiV j − ViBj

)
= 0 . (6.117)

Moreover, thanks to the divergence formula ( 2.65) for a vector field, we may also
rewrite the Maxwell equation (6.96) in terms of Bi as

∂

∂xi
Bi = 0 . (6.118)

Since the determinantγ is not a scalar field (it depends on the choice of the coordinates
(xi) on Σt), the Bi’s defined by (6.116) are not the components of a tensor field,
but rather the components a tensor density. We shall discuss tensor densities in more
details in Sect. 7.2.1.

Remark 6.11 One could arrive at Eqs. (6.117), (6.118) directly from the 4-dimensio-
nal Maxwell equation (6.84a) with the divergence of �F expressed according to
formula (2.66):

∂

∂xμ

(√−g � Fαμ
) = 0.

Substituting (6.106b) for �F and using
√−g = N

√
γ [Eq. (5.55)], we get

∂

∂xμ

[
N

√
γ
(
bαuμ − uαbμ

)] = 0.

Now thanks to (6.107), bαuμ − uαbμ = Γ −1(Bαuμ − uαBμ). Since Γ = Nu0 [Eq.
(6.29)], we obtain

∂

∂xμ

[√
γ

(
Bα uμ

u0 − uα

u0 Bμ

)]
= 0.
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Since B0 = 0 (for B is tangent to Σt), we may write the above formula as

∂

∂t

(√
γ Bα

)+ ∂

∂xj

[√
γ

(
Bα uj

u0 − uα

u0 Bj
)]

= 0.

Using Vj = uj/u0 [Eq. (6.36)] and B0 = 0, we conclude that the above equation
gives (6.118) for α = 0 and (6.117) for α = i ∈ {1, 2, 3}.

Since for ideal MHD the electric field E is entirely determined by B and U [cf.
Eq. (6.110)], there is no need to re-express the 3+1 Maxwell equations (6.98) and
(6.99). We are instead taking the point of view that these equations give the electric
charge density ρe and the electric current J once B (and hence E) is known.

6.5.3 Electromagnetic Energy, Momentum and Stress

Let us evaluate the 3+1 components Eem, pem and Sem of the electromagnetic stress-
energy tensor, as given by Eqs. (6.101)–(6.103) for the specific case of ideal MHD.
This amounts to replacing E in these expressions by the value (6.110). Using the
identity (6.114), as well as εiklε

jnm = 6δ
[j
i δ

m
kδ

n]
l, we obtain

Eem = 1

2μ0

[
(1 + U · U)B · B − (U · B)2

]
(6.119)

pem = 1

μ0

[
(B · B)U − (U · B)B

]
(6.120)

Sem = 1

μ0

{
1

2

[
1

Γ 2 B · B + (U · B)2
]

γ − 1

Γ 2 B ⊗ B + (B · B)U ⊗ U

−(U · B)
(
U ⊗ B + B ⊗ U

) }
. (6.121)

6.5.4 MHD-Euler Equation

The MHD-Euler equation is derived from the energy-momentum conservation equa-
tion (6.1) in the form

∇ · (
−→
T fl + −→

T em) = 0, (6.122)

where Tfl is the fluid stress-energy tensor as given by (6.100) and Tem is the electro-
magnetic field stress-energy tensor as given by (6.24). Now it is a standard result4

that

∇ · −→
T em = −F(., j). (6.123)

4 It is easy to establish it starting from expression (6.100) for Tem and using the Maxwell equation
(6.84b) to let appear j and the Maxwell equation (6.84a) in the equivalent form ∇αFβγ +∇βFγα +
∇γ Fαβ = 0.
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Therefore (6.122) becomes

∇ · −→
T fl = F(., j). (6.124)

Let us evaluate F(., j). By plugging (6.110) into (6.81), we get the 3+1 expression
of the electromagnetic field tensor in ideal MHD:

F = n ⊗ ε(., B, U) − ε(., B, U) ⊗ n + ε(B, ., .), (6.125)

hence

F(., j) = ε(j, B, U)n − (n · j)ε(., B, U) + ε(B, ., j).

From the 3+1 decomposition (6.86) of j,we haveε(j, B, U) = ε(J, B, U), n·j = −ρe
and ε(B, ., j) = ε(B, ., J) = ε(., J, B). Consequently, we arrive at the following 3+1
decomposition of F(., j):

F(., j) = ε(J, B, U)n + ε(., J − ρeU, B). (6.126)

Accordingly the 3+1 decomposition of Eq. (6.124) is

n · (∇ · −→
T fl) = −ε(J, B, U) (6.127a)

−→
γ ∗∇ · −→

T fl = ε(., J − ρeU, B). (6.127b)

The terms n · (∇ · −→
T fl) and −→

γ
∗∇ · −→

T fl have been computed in Sect. 6.3. Noticing
that (i) a multiplication by −N has been performed to go from n · (∇ · −→

T fl) = 0 to
Eq. (6.59), and (ii) a multiplication by N/(E + P) to go from −→

γ
∗∇ · −→

T fl = 0 to
Eq. (6.61), we conclude that the energy conservation law for ideal MHD is

∂E

∂t
− β iDiE + N

{
Di

[
(E + P)Ui

]
− (E + P)(K + KijU

iUj)
}

+ 2(E + P)UiDiN = NεijkJiBjUk
(6.128)

and that the MHD-Euler equation is

∂Ui
∂t + VjDjUi = − N

E + P

[
DiP + Ui

N

(
∂P

∂t
− β j ∂P

∂xj

)
− εijk(Jj − ρeUj)Bk

]

−DiN + UiU
j
(

DjN − NKjkUk
)

+ UjDiβ
j.

(6.129)
In these equations, ρe and J are to be considered as functions of (B, U) expressed
by Eqs. (6.98) and (6.99), with E given by (6.110).

At the non-relativistic limit, Eqs. (6.128) and (6.129) reduce to respectively [cf.
Eqs. (6.60) and (6.62)]
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∂E′

∂t
+ D̄i[(E′ + P)Ui] = −Ui(ρ0D̄iΦ) + UiεijkJjBk, (6.130)

∂Ui

∂t
+ UjD̄jUi = − 1

ρ0
D̄iP − D̄iΦ + 1

ρ0
εijkJjBk . (6.131)

We recognize in εijkJjBk the Lorentz force term of non-relativistic MHD and in
UiεijkJjBk the power transferred to the fluid by that force.

6.5.5 MHD in Flux-Conservative Form

As for the pure hydrodynamical case (cf. Sect. 6.3.6), the relativistic MHD equations
are amenable to a flux-conservative form:

∂UA

∂t
+ ∂

∂xj
F

j
A = SA , 0 ≤ A ≤ 7, (6.132)

with the state vector

U0 := D = √
γNb = √

γΓ nb (6.133a)

Ui := √
γ pi = √

γ

[
(E + P)Ui + 1

μ0

(
BjB

jUi − UjB
jBi

)]
, 1 ≤ i ≤ 3

(6.133b)

U4 := √
γ

{
E − E0 + 1

2μ0

[
(1 + UjU

j)BjB
j − (UjB

j)2
]}

(6.133c)

U4+i := Bi = √
γ Bi, 1 ≤ i ≤ 3, (6.133d)

the flux vectors

F
j
0 := DVj (6.134a)

F
j
i := √

γ

{

N

[

P + 1

μ0

(
BkBk

Γ 2 + (UkBk)2

)]

δj
i + BkBk

μ0
ViU

j

+
[

(E + P)Ui − UK Bk

μ0
Bi

]

Vj − N

μ0

[
Bi

Γ 2 − UkBkUi

]
Bj

}

,

1 ≤ i ≤ 3 (6.134b)

F
j
4 := √

γ

[
(E − E0)V

j + NPUj + N

μ0
(BkBkUj − UkBkBj) − Eemβ j

]

(6.134c)

F
j
4+i := BiV j − ViBj, 1 ≤ i ≤ 3 (6.134d)
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and the source vector

S0 := 0 (6.135a)

Si := √
γ
[
pjDiβ

j − (E + Eem)DiN + Γ k
ij

(
NSj

k − β jpk

)]
(6.135b)

S4 := √
γ
(

NKjkSjk − pjDjN
)

(6.135c)

S4+i := 0, 1 ≤ i ≤ 3. (6.135d)

In the above relations, E stands for the energy density (with respect to the Eulerian
observer) of the fluid only, i.e. the quantity given by (6.49), whereas pi is the total
momentum density with respect to the Eulerian observer: p = pfl + pem with pfl
given by (6.57) and pem by (6.120). Similarly, Sij is the total stress tensor with
respect to the Eulerian observer: S = Sfl + Sem with Sfl given by (6.58) and Sem
by (6.121). The system (6.132)–(6.135a), (6.135b), (6.135c), (6.135d) follows from
the baryon number conservation (6.67) (index A = 0), the momentum conservation
(6.70) (A = 1, 2, 3), the energy conservation (6.72) (with E → E + Eem) (A = 4)

and the Maxwell–Faraday equation (6.117) (A = 5, 6, 7). Note that, in addition to
the system (6.132)–(6.135a), (6.135b), (6.135c), (6.135d), the constraint (6.118) has
to be satisfied.

The flux-conservative form of the MHD equations has been developed by Gam-
mie, McKinney and Tóth [35], Komissarov [36], Duez et al. [37], Shibata and
Sekiguchi [38] and Antón et al. [39]. Most modern codes for general relativistic
MHD employ such a formulation, via HRSC schemes. This concerns, among others,
WhiskyMHD [19, 40, 41], HAD GRMHD [42], X-ECHO [43], the code of Kiuchi
et al. [44, 45], the code of Cerdá-Durán, Font, Antón and Müller [46] and the code
of Etienne et al. [47]. Let us mention that modern special relativistic MHD codes,
such as the AMRVAC code [48], are also based on the flux-conservative form.
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Chapter 7
Conformal Decomposition

Abstract This is a technical chapter to prepare the following ones. We motivate
and perform a conformal decomposition of the 3-metric on each hypersurface of a
3+1 slicing. To avoid dealing with tensor densities, we introduce a background flat
3-metric. The link between the connections of the physical 3-metric and the confor-
mal one is exhibited, leading to the computation of the Ricci tensor of the conformal
3-metric. Two associated decompositions of the extrinsic curvature are presented,
with two different conformal rescalings of the traceless part. The 3+1 Einstein equa-
tions are then rewritten in terms of the conformal quantities. Finally, we discuss
the Isenberg-Wilson-Mathews approximation to general relativity, which amounts
to assuming that the conformal 3-metric is flat and that the slicing is maximal.

7.1 Introduction

Historically, conformal decompositions in 3+1 general relativity have been intro-
duced in two contexts. First of all, Lichnerowicz has introduced in 1944 [1]1 a
decomposition of the induced metric γ of the hypersurfaces Σt of the type

γ = Ψ 4γ̃ , (7.1)

where Ψ is some strictly positive scalar field and γ̃ an auxiliary metric on Σt. Note
that γ being a Riemannian metric (cf. Sect. 2.3.2), γ̃ is necessarily of the same type.
The relation (7.1) is called a conformal transformation and γ̃ will be called hereafter
the conformal metric . Lichnerowicz has shown that the conformal decomposition
of γ , along with some specific conformal decomposition of the extrinsic curvature
provides a fruitful tool for the resolution of the constraint equations, in order to get
valid initial data for the Cauchy problem. This will be discussed in Chap. 9.

1 See also Ref. [2] which is freely accessible on the web.

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 133
DOI: 10.1007/978-3-642-24525-1_7, © Springer-Verlag Berlin Heidelberg 2012
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Then, in 1971–72, York [3, 4] has shown that conformal decompositions are also
important for the time evolution problem, by demonstrating that the two degrees of
freedom of the gravitational field are carried by the conformal equivalence classes
of 3-metrics. A conformal equivalence class is defined as the set of all metrics that
can be related to a given metric γ by a transformation like (7.1). The argument of
York is based on the Cotton tensor [5], which is a rank-3 covariant tensor defined
from the covariant derivative of the Ricci tensor R of γ by

Cijk := Dk

(
Rij − 1

4
Rγij

)
− Dj

(
Rik − 1

4
Rγik

)
. (7.2)

The Cotton tensor is conformally invariant and shows the same property with respect
to 3-dimensional pseudo-Riemannian manifolds than the Weyl tensor [cf. Eq. (2.83)]
for pseudo-Riemannian manifolds of dimension strictly greater than three, namely
its vanishing is a necessary and sufficient condition for the metric to be conformally
flat, i.e. to be expressible as γ = Ψ 4f , where Ψ is some strictly positive scalar
field and f a flat metric. Let us recall that in dimension 3, the Weyl tensor vanishes
identically (cf. Sect. 2.4.4). More precisely, York [3] constructed from the Cotton
tensor the following rank-2 tensor

Cij := −1

2
εiklCmklγ

mj = εiklDk

(
Rj

l − 1

4
Rδj

l

)
, (7.3)

where ε is the Levi–Civita alternating tensor associated with the metric γ

[cf. Eq. (6.93)]. The tensor C is called the Cotton–York tensor and exhibits the
following properties:

• symmetry: Cji = Cij

• traceless: γijCij = 0
• divergence-free (one says also transverse): DjCij = 0

Moreover, if one consider, instead of C, the following tensor density of
weight 5/3,

Cij∗ := γ 5/6Cij, (7.4)

where γ := det(γij), then one gets a conformally invariant quantity. Indeed, under a
conformal transformation of the type (7.1), εikl = Ψ −6ε̃ikl , Cmkl = C̃mkl (conformal
invariance of the Cotton tensor), γ ml = Ψ −4γ̃ ml and γ 5/6 = Ψ 10γ̃ 5/6, so that
Cij∗ = C̃ij∗ . The traceless and transverse (TT) properties being characteristic of the
pure spin 2 representations of the gravitational field (see e.g. [6]), the conformal
invariance of Cij∗ shows that the true degrees of freedom of the gravitational field are
carried by the conformal equivalence class.

Remark 7.1 The remarkable feature of the Cotton–York tensor is to be a TT object
constructed from the physical metric γ alone, without the need of some extra-
structure on the manifold Σt. Usually, TT objects are defined with respect to some
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extra-structure, such as privileged Cartesian coordinates or a flat background metric,
as in the post-Newtonian approach to general relativity (see e.g. [7, 8]).

Remark 7.2 The Cotton and Cotton–York tensors involve third derivatives of the
metric tensor.

7.2 Conformal Decomposition of the 3-Metric

7.2.1 Unit-Determinant Conformal “Metric”

A somewhat natural representative of a conformal equivalence class is the unit-
determinant conformal “metric”

γ̂ := γ −1/3γ , (7.5)

where γ := det(γij). This would correspond to the choice Ψ = γ 1/12 in Eq. (7.1).
All the metrics γ in the same conformal equivalence class lead to the same value
of γ̂ . However, since the determinant γ depends upon the choice of coordinates to
express the components γij , Ψ = γ 1/12 would not be a scalar field. Actually, the
quantity γ̂ is not a tensor field, but a tensor density, of weight −2/3.

Let us recall that a tensor density of weight n ∈ Q is a quantity τ such that

τ = γ n/2T, (7.6)

where T is a tensor field.

Remark 7.3 The conformal “metric” (7.5) has been used notably in the BSSN for-
mulation [9, 10] for the time evolution of the 3+1 Einstein system, to be discussed
in Chap. 10. An “associated” connection D̂ has been introduced, such that D̂γ̂ = 0.
However, since γ̂ is a tensor density and not a tensor field, there is not a unique con-
nection associated with it (the Levi–Civita connection, cf. Sect. 2.4.2). In particular
one has Dγ̂ = 0, so that the connection D associated with the metric γ is “associ-
ated” with γ̂ , in addition to D̂. As a consequence, some of the formulæ presented
in the original references [9, 10] for the BSSN formalism have a meaning only for
Cartesian coordinates.

7.2.2 Background Metric

To clarify the meaning of D̂ (i.e. to avoid working with tensor densities) and to
allow for the use of spherical coordinates, we introduce an extra structure on the
hypersurfaces Σt, namely a background metric f [11]. It is asked that the signature
of f is (+,+,+), i.e. that f is a Riemannian metric, as γ (cf. Sect. 2.3.2). Moreover,
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we tight f to the coordinates (xi) on Σt by demanding that the components fij of f
with respect to (xi) obey to

∂fij

∂t
= 0. (7.7)

An equivalent writing of this is

L ∂t f = 0, (7.8)

i.e. the metric f is Lie-dragged along the coordinate time evolution vector ∂ t.
If the topology of Σt enables it, it is quite natural to choose f to be flat, i.e. such

that its Riemann tensor vanishes. However, in this chapter, we shall not make such
hypothesis, except in Sect. 7.6.

The inverse metric is denoted by f ij :

f ikfkj = δi
j . (7.9)

In particular note that, except for the very special case γij = fij , one has

f ij �= γ ikγ jl fkl . (7.10)

We denote by D̄ the Levi–Civita connection associated with f :

D̄kfij = 0, (7.11)

and define

D̄i = f ij D̄j . (7.12)

The Christoffel symbols of the connection D̄ with respect to the coordinates (xi) are
denoted by Γ̄ kij; they are given by Eq. (2.62):

Γ̄ k
ij = 1

2
f kl

(
∂flj

∂xi + ∂fil

∂xj − ∂fij

∂xl

)
. (7.13)

7.2.3 Conformal Metric

Thanks to f , we define

γ̃ := Ψ −4γ , (7.14)
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where

Ψ :=
(

γ

f

)1/12

, γ := det(γij), f := det(fij). (7.15)

The key point is that, contrary to γ, Ψ is a tensor field on Σt. Indeed a change of
coordinates (xi) �→ (xi′) induces the following changes in the determinants:

γ ′ = (det J)2γ (7.16a)

f ′ = (det J)2f , (7.16b)

where J denotes the Jacobian matrix

Ji
i′ := ∂xi

∂xi′ . (7.17)

From Eqs. (7.16) it is obvious that γ ′/f ′ = γ /f , which shows that γ /f , and hence Ψ ,
is a scalar field. Of course, this scalar field depends upon the choice of the background
metric f . Ψ being a scalar field, the quantity γ̃ defined by (7.14) is a tensor field on
Σt. Moreover, it is a Riemannian metric on Σt. We shall call it the conformal metric.
By construction, it satisfies

det(γ̃ij) = f . (7.18)

This is the “unit-determinant” condition fulfilled by γ̃ . Indeed, if one uses for (xi)

Cartesian-type coordinates, then f = 1. But the condition (7.18) is more flexible
and allows for the use of e.g. spherical type coordinates (xi) = (r, θ, ϕ), for which
f = r4 sin2 θ .

We define the inverse conformal metric γ̃ ij by the requirement

γ̃ik γ̃ kj = δ
j

i , (7.19)

which is equivalent to

γ̃ ij = Ψ 4γ ij . (7.20)

Hence, combining with Eq. (7.14),

γij = Ψ 4γ̃ij and γ ij = Ψ −4γ̃ ij . (7.21)

Note also that although we are using the same notation γ̃ for both γ̃ij and γ̃ ij , one
has

γ̃ ij �= γ ikγ jl γ̃kl , (7.22)

except in the special case Ψ = 1.
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Example 7.1 A simple example of a conformal decomposition is provided by
the Schwarzschild spacetime described with isotropic coordinates (xα) =
(t, r, θ, ϕ); the latter are related to the standard Schwarzschild coordinates
(t, R, θ, ϕ) by R = r

(
1 + m

2r

)2. The components of the spacetime metric
tensor in the isotropic coordinates are given by (see e.g. [12])

gμvdxμdxv = −
(

1 − m
2r

1 + m
2r

)2

dt2 +
(

1 + m
2r

)4 [
dr2 + r2(dθ2 + sin2 θdϕ2)

]
,

(7.23)

where the constant m is the mass of the Schwarzschild solution. If we define
the background metric to be fij = diag(1, r2, r2 sin2 θ), we read on this line
element that γ = Ψ 4γ̃ with

Ψ = 1 + m
2r

(7.24)

and γ̃ = f . Notice that in this example, the background metric f is flat and
that the conformal metric coincides with the background metric.

Example 7.2 Another example is provided by the weak field metric introduced
in Sect. 6.2.3 to take Newtonian limits. We read on the line element (6.12) that
the conformal metric is γ̃ = f and that the conformal factor is

Ψ = (1 − 2Φ)1/4 � 1 − 1

2
Φ, (7.25)

where |Φ| 	 1 and Φ reduces to the gravitational potential at the Newtonian
limit. As a side remark, notice that if we identify expressions (7.24) and (7.25),
we recover the standard expression Φ = −m/r (remember G = 1 !) for the
Newtonian gravitational potential outside a spherical distribution of mass.

7.2.4 Conformal Connection

γ̃ being a well defined metric on Σt, let D̃ be the Levi–Civita connection associated
with it (cf. Sect. 2.4.2):

D̃γ̃ = 0. (7.26)

Let us denote by Γ̃ k
ij the Christoffel symbols of D̃ with respect to the coordinates

(xi) [cf. Eq. (2.62)]:
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Γ̃ k
ij = 1

2
γ̃ kl

(
∂γ̃lj

∂xi + ∂γ̃il

∂xj − ∂γ̃ij

∂xl

)
. (7.27)

Given a tensor field T of type (p, q) on Σt, the covariant derivatives D̃T and DT
are related by the formula

DkT i1...ip
j1...jq = D̃kT i1...ip

j1...jq +
p∑

r=1

Cir
klT

i1...l...ip
j1...jq

−
q∑

r=1

Cl
kjr T

i1...ip
j1...l...jq , (7.28)

where2

Ck
ij := Γ k

ij − Γ̃ k
ij, (7.29)

Γ k
ij being the Christoffel symbols of the connection D. The formula (7.28)

follows immediately from the expressions of DT and D̃T in terms of respectively
the Christoffel symbols Γ k

ij and Γ̃ k
ij [cf. Eq. (2.54)]. Since DkT i1...ip j1...jq −

D̃kT i1...ip j1...jq are the components of a tensor field, namely DT − D̃T, it follows

from Eq. (7.28) that the Ck
ij are also the components of a tensor field. Hence we

recover a well known property: although the Christoffel symbols are not the com-
ponents of any tensor field, the difference between two sets of them represents the
components of a tensor field. We may express the tensor Ck

ij in terms of the D̃-
derivatives of the metric γ , by the same formula than the one for the Christoffel
symbols Γ k

ij , except that the partial derivatives are replaced by D̃-derivatives:

Ck
ij = 1

2
γ kl

(
D̃iγlj + D̃jγil − D̃lγij

)
. (7.30)

It is easy to establish this relation by evaluating the right-hand side, expressing the
D̃-derivatives of γ in terms of the Christoffel symbols Γ̃ k

ij :

1

2
γ kl

(
D̃iγlj + D̃jγil − D̃lγij

)
= 1

2
γ kl

(
∂γlj

∂xi − Γ̃ m
ilγmj − Γ̃ m

ijγlm + ∂γil

∂xj − Γ̃ m
jiγml

− Γ̃ m
jlγim − ∂γij

∂xl
+ Γ̃ m

liγmj + Γ̃ m
ljγim

)

= Γ k
ij + 1

2
γ kl (−2)Γ̃ m

ijγlm

= Γ k
ij − δk

mΓ̃ m
ij

= Ck
ij ,

2 The Ck
ij are not to be confused with the components of the Cotton tensor discussed in Sect. 7.1

Since we shall no longer make use of the latter, no confusion may arise.
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where we have used the symmetry with respect to (i, j) of the Christoffel symbols
Γ̃ k

ij to get the second line.

Let us replace γij and γ ij in Eq. (7.30) by their expressions (7.21) in terms of γ̃ij ,
γ̃ ij and Ψ :

Ck
ij = 1

2
Ψ −4γ̃ kl

[
D̃i(Ψ

4γ̃lj) + D̃j(Ψ
4γil) − D̃l(Ψ

4γ̃ij)
]

= 1

2
Ψ −4γ̃ kl

(
γ̃lj D̃iΨ

4 + γ̃il D̃jΨ
4 − γ̃ij D̃lΨ

4
)

= 1

2
Ψ −4

(
δk

jD̃iΨ
4 + δk

iD̃jΨ
4 − γ̃ij D̃kΨ 4

)

Hence

Ck
ij = 2

(
δk

iD̃j ln Ψ + δk
jD̃i ln Ψ − D̃k ln Ψ γ̃ij

)
. (7.31)

A useful application of this formula is to derive the relation between the two
covariant derivatives Dv and D̃v of a vector field v ∈ T (Σt). From Eq. (7.28),
we have

Djv
i = D̃jv

i + Ci
jkvk,

so that expression (7.31) yields

Djv
i = D̃jv

i + 2
(

vkD̃k ln Ψ δi
j + viD̃j ln Ψ − D̃i ln Ψ γ̃jkvk

)
. (7.32)

Taking the trace, we get a relation between the two divergences:

Div
i = D̃iv

i + 6viD̃i ln Ψ, (7.33)

or equivalently,

Div
i = Ψ −6D̃i

(
Ψ 6vi

)
. (7.34)

Remark 7.4 The above formula could have been obtained directly from the standard
expression (2.65) of the divergence of a vector field in terms of partial derivatives
and the determinant γ of γ , both with respect to some coordinate system (xi):

Div
i = 1√

γ

∂

∂xi

(√
γ vi) . (7.35)

Noticing that γij = Ψ 4γ̃ij implies
√

γ = Ψ 6
√

γ̃ , we get immediately Eq. (7.34).
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7.3 Expression of the Ricci Tensor

In this section, we express the Ricci tensor R, which appears in the 3+1 Einstein
system (5.68–5.71), in terms of the Ricci tensor R̃ associated with the metric γ̃ and
derivatives of the conformal factor Ψ .

7.3.1 General Formula Relating the Two Ricci Tensors

The starting point of the calculation is the Ricci identity (3.15) applied to a generic
vector field v ∈ T (Σt):

(DiDj − DjDi)v
k = Rk

lijv
l . (7.36)

Contracting this relation on the indices i and k (and relabelling i ↔ j) makes the
Ricci tensor appear:

Rijv
j = DjDiv

j − DiDjv
j . (7.37)

Expressing the D-derivatives in term of the D̃-derivatives via formula (7.28),
we get

R ijv
j = D̃j(Div

j) − Ck
jiDkv j + Cj

jkDiv
k − D̃i(Djv

j)

= D̃j(D̃iv
j + Cj

ikvk) − Ck
ji(D̃kv j + Cj

klv
l) + Cj

jk(D̃iv
k + Ck

ilv
l)

− D̃i(D̃jv
j + Cj

jkvk)

= D̃jD̃iv
j + D̃jCj

ikvk + Cj
ikD̃jv

k − Ck
jiD̃kv j − Ck

jiCj
klv

l + Cj
jkD̃iv

k

+ Cj
jkCk

ilv
l − D̃iD̃jv

j − D̃iCj
jkvk − Cj

jkD̃iv
k

= D̃jD̃iv
j − D̃iD̃jv

j + D̃jCj
ikvk − Ck

jiCj
klv

l + Cj
jkCk

ilv
l − D̃iCj

jkvk .

(7.38)

We can replace the first two terms in the right-hand side via the contracted Ricci
identity similar to Eq. (7.37) but regarding the connection D̃:

D̃jD̃iv
j − D̃iD̃jv

j = R̃ijv
j (7.39)

Then, after some relabelling j ↔ k or j ↔ l of dumb indices, Eq. (7.38) becomes

Rijv
j = R̃ijv

j + D̃kCk
ijv

j − D̃iCk
jkv j + Cl

lkCk
ijv

j − Ck
liC

l
kjv

j .

This relation being valid for any vector field v, we conclude that

Rij = R̃ij + D̃kCk
ij − D̃iCk

kj + Ck
ijCl

lk − Ck
ilC

l
kj , (7.40)

where we have used the symmetry of Ck
ij in its two last indices.
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Remark 7.5 Equation (7.40) is the general formula relating the Ricci tensors of
two connections, with the Ck

ij’s being the differences of their Christoffel symbols
[Eq. (7.29)]. This formula does not rely on the fact that the metrics γ and γ̃ associated
with the two connections are conformally related.

7.3.2 Expression in Terms of the Conformal Factor

Let now replace Ck
ij in Eq. (7.40) by its expression in terms of the derivatives of Ψ ,

i.e. Eq. (7.31). First of all, by contracting Eq. (7.31) on the indices j and k, we have

Ck
ki = 2

(
D̃i ln Ψ + 3D̃i ln Ψ − D̃i ln Ψ

)
,

i.e.

Ck
ki = 6D̃i ln Ψ, (7.41)

whence D̃iCk
kj = 6D̃iD̃j ln Ψ . Besides,

D̃kCk
ij = 2

(
D̃iD̃j ln Ψ + D̃jD̃i ln Ψ − D̃kD̃k ln Ψ γ̃ij

)

= 4D̃iD̃j ln Ψ − 2D̃kD̃k ln Ψ γ̃ij .

Consequently, Eq. (7.40) becomes

Rij = R̃ij + 4D̃iD̃j ln Ψ − 2D̃kD̃k ln Ψ γ̃ij − 6D̃iD̃j ln Ψ

+ 2
(
δk

iD̃j ln Ψ + δk
j D̃i ln Ψ − D̃k ln Ψ γ̃ij

)
× 6D̃k ln Ψ

− 4
(
δk

iD̃l ln Ψ + δk
l D̃i ln Ψ − D̃k ln Ψ γ̃il

)

×
(
δl

kD̃j ln Ψ + δl
j D̃k ln Ψ − D̃l ln Ψ γ̃kj

)
.

Expanding and simplifying, we get

Rij = R̃ij − 2D̃iD̃j ln Ψ − 2D̃kD̃k ln Ψ γ̃ij + 4D̃i ln Ψ D̃j ln Ψ − 4D̃k ln Ψ D̃k ln Ψ γ̃ij .

(7.42)

7.3.3 Formula for the Scalar Curvature

The relation between the scalar curvatures is obtained by taking the trace of Eq. (7.42)
with respect to γ :
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R = γ ijRij = Ψ −4γ̃ ijRij

= Ψ −4(γ̃ ij R̃ij − 2D̃iD̃i ln Ψ − 2D̃kD̃k ln Ψ × 3 + 4D̃i ln Ψ D̃i ln Ψ

− 4D̃k ln Ψ D̃k ln Ψ × 3
)

R = Ψ −4
[
R̃ − 8

(
D̃iD̃i ln Ψ + D̃i ln Ψ D̃i ln Ψ

)]
, (7.43)

where

R̃ := γ̃ ij R̃ij (7.44)

is the scalar curvature associated with the conformal metric. Noticing that

D̃iD̃i ln Ψ = Ψ −1D̃iD̃iΨ − D̃i ln Ψ D̃i ln Ψ,

we can rewrite the above formula as

R = Ψ −4R̃ − 8Ψ −5D̃iD̃iΨ . (7.45)

7.4 Conformal Decomposition of the Extrinsic Curvature

7.4.1 Traceless Decomposition

The first step is to decompose the extrinsic curvature K of the hypersurface Σt into a
trace part and a traceless one, the trace being taken with the metric γ , i.e. we define

A := K − 1

3
Kγ , (7.46)

where K := trγ K = K i
i = γ ijK ij is the trace of K with respect to γ , i.e.

(minus three times) the mean curvature of Σt embedded in (M , g) (cf. Sect. 3.3.4).
The bilinear form A is by construction traceless:

trγ A = γ ijAij = 0. (7.47)

In what follows, we shall work occasionally with the twice contravariant version

of K, i.e. the tensor
�
K , the components of which are [cf. Eq. (2.40)]

K ij = γ ikγ jlKkl . (7.48)

Similarly, we define
�
A as the twice contravariant tensor, the components of which

are
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Aij = γ ikγ jlAkl . (7.49)

Hence the traceless decomposition of K and
�
K :

Kij = Aij + 1

3
Kγij and K ij = Aij + 1

3
Kγ ij . (7.50)

7.4.2 Conformal Decomposition of the Traceless Part

Let us now perform the conformal decomposition of the traceless part of K, namely,
let us write

Aij = Ψ αÃ
ij

(7.51)

for some power α to be determined. Actually there are two natural choices: α = −4
and α = −10, as we discuss hereafter:

7.4.2.1 “Time-Evolution” Scaling: α = −4

Let us consider Eq. (4.30) which express the time evolution of γ in terms of K:

Lmγij = −2NKij . (7.52)

By means of Eqs. (7.21) and (7.50), this equation becomes

Lm

(
Ψ 4γ̃ij

)
= −2NAij − 2

3
NKγij,

i.e.

Lmγ̃ij = −2NΨ −4Aij − 2

3
(NK + 6Lm ln Ψ ) γ̃ij . (7.53)

The trace of this relation with respect to γ̃ is, since Aij is traceless,

γ̃ ijLmγ̃ij = −2(NK + 6Lm ln Ψ ). (7.54)

Now

γ̃ ijLmγ̃ij = Lm ln det(γ̃ij). (7.55)

This follows from the general law (2.64) for the variation of the determinant of an
invertible matrix: applying Eq. (2.64) to A = (γ̃ij) and δ = Lm gives Eq. (7.55). By
construction, det(γ̃ij) = f [Eq. (7.18)], so that, replacing m by ∂ t − β, we get
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Lm ln det(γ̃ij) =
(

∂

∂t
− Lβ

)
ln f

But, as a consequence of Eq. (7.7), ∂f /∂t = 0, so that

Lm ln det(γ̃ij) = −Lβ ln f = −Lβ ln det(γ̃ij).

Applying again formula (2.64) to A = (γ̃ij) and δ = Lβ , we get

Lm ln det(γ̃ij) = −γ̃ ijLβ γ̃ij

= −γ̃ ij
(
βk D̃k γ̃ij︸ ︷︷ ︸

0

+γ̃kjD̃iβ
k + γ̃ikD̃jβ

k
)

= −δi
kD̃iβ

k − δ
j
kD̃jβ

k

= −2D̃iβ
i .

Hence Eq. (7.55) becomes

γ̃ ijLmγ̃ij = −2D̃iβ
i, (7.56)

so that, after substitution into Eq. (7.54), we get

NK + 6Lm ln Ψ = D̃iβ
i, (7.57)

i.e. the following evolution equation for the conformal factor:

(
∂

∂t
− Lβ

)
ln Ψ = 1

6

(
D̃iβ

i − NK
)

. (7.58)

Finally, substituting Eqs. (7.57) into (7.53) yields an evolution equation for the con-
formal metric: (

∂

∂t
− Lβ

)
γ̃ij = −2NΨ −4Aij − 2

3
D̃kβk γ̃ij .

This suggests to introduce the quantity

Ã ij := Ψ −4Aij (7.59)

to write

(
∂

∂t
− Lβ

)
γ̃ij = −2NÃ ij − 2

3
D̃kβk γ̃ij . (7.60)

Notice that, as an immediate consequence of Eq. (7.47),Ã ij is traceless:
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γ̃ ijÃ ij = 0 . (7.61)

Let us rise the indices of Ãij with the conformal metric, defining

Ã
ij := γ̃ ik γ̃ jl Ãkl . (7.62)

Since γ̃ ij = Ψ 4γ ij , we get

Ã
ij = Ψ 4Aij . (7.63)

This corresponds to the scaling factor α = −4 in Eq. (7.51). This choice of scaling
has been first considered by Nakamura in 1994 [13].

We can deduce from Eq. (7.60) an evolution equation for the inverse conformal
metric γ̃ ij . Indeed, raising the indices of Eq. (7.60) with γ̃ , we get

γ̃ ik γ̃ jlLmγ̃kl = −2NÃ
ij − 2

3
D̃kβk γ̃ ij

γ̃ ik[
Lm(γ̃ jl γ̃kl︸ ︷︷ ︸

δj
k

) − γ̃klLmγ̃ jl] = −2NÃ
ij − 2

3
D̃kβk γ̃ ij

− γ̃ ik γ̃kl︸ ︷︷ ︸
δi

l

Lmγ̃ jl = −2NÃ
ij − 2

3
D̃kβk γ̃ ij,

hence (
∂

∂t
− Lβ

)
γ̃ ij = 2NÃ

ij + 2

3
D̃kβk γ̃ ij . (7.64)

7.4.2.2 “Momentum-Constraint” Scaling: α = −10

Whereas the scaling α = −4 was suggested by the evolution equation (7.52)
(or equivalently Eq. (5.68) of the 3+1 Einstein system), another scaling arises when
contemplating the momentum constraint equation (5.71). In this equation appears the
divergence of the extrinsic curvature, that we can write using the twice contravariant
version of K and Eq. (7.50):

DjK ij = DjAij + 1

3
DiK . (7.65)

Now, from Eqs. (7.28), (7.31) and (7.41),

DjAij = D̃jAij + Ci
jkAkj + Cj

jkAik

= D̃jAij + 2
(
δi

j D̃k ln Ψ + δi
kD̃j ln Ψ − D̃i ln Ψ γ̃jk

)
Akj + 6D̃k ln Ψ Aik

= D̃jAij + 10AijD̃j ln Ψ − 2D̃i ln Ψ γ̃jkAjk.
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Since A is traceless, γ̃jkAjk = Ψ −4γjkAjk = 0. Then the above equation reduces to
DjAij = D̃jAij + 10AijD̃j ln Ψ , which can be rewritten as

DjAij = Ψ −10D̃j

(
Ψ 10Aij

)
. (7.66)

Notice that this identity is valid only because Aij is symmetric and traceless.
Equation (7.66) suggests to introduce the quantity3

Â
ij := Ψ 10Aij . (7.67)

This corresponds to the scaling factor α = −10 in Eq. (7.51). It has been first
introduced by Lichnerowicz in 1944 [1]. Thanks to it and Eq. (7.65), the momentum
constraint equation (5.71) can be rewritten as

D̃jÂ
ij − 2

3
Ψ 6D̃iK = 8πΨ 10pi . (7.68)

As for Ãij , we define Âij as the tensor field deduced from Â
ij

by lowering the
indices with the conformal metric:

Âij := γ̃ik γ̃jl Â
kl

(7.69)

Taking into account Eq. (7.67) and γ̃ij = Ψ −4γij , we get

Â ij = Ψ 2Aij . (7.70)

7.5 Conformal Form of the 3+1 Einstein System

Having performed a conformal decomposition of γ and of the traceless part of K,
we are now in position to rewrite the 3+1 Einstein system (5.68)–(5.71) in terms of
conformal quantities.

7.5.1 Dynamical Part of Einstein Equation

Let us consider Eq. (5.69), i.e. the so-called dynamical equation in the 3+1 Einstein
system:

3 Notice that we are using a hat, instead of a tilde, to distinguish this quantity from that defined
by (7.63).
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LmKij = −DiDjN + N
{

Rij + KKij − 2KikK k
j + 4π

[
(S − E)γij − 2Sij

]}
.

(7.71)

Let us substitute Aij + (K/3)γij for Kij [Eq. (7.50)]. The left-hand side of the above
equation becomes

LmKij = LmAij + 1

3
LmKγij + 1

3
K Lmγij︸ ︷︷ ︸

−2NKij

. (7.72)

In this equation appears LmK . We may express it by taking the trace of Eq. (7.71)
and making use of Eq. (4.47):

LmK = γ ijLmKij + 2NKijK ij,

hence

LmK = −DiDiN + N
[
R + K 2 + 4π(S − 3E)

]
. (7.73)

Let use the Hamiltonian constraint (5.70) to replace R + K 2 by 16πE + KijK ij .
Then, writing LmK = ( ∂

∂t − Lβ)K ,

(
∂

∂t
− Lβ

)
K = −DiDiN + N

[
4π(E + S) + KijK ij] . (7.74)

Remark 7.6 At the Newtonian limit, as defined by Eqs. (6.13), (6.22) and (6.56),
Eq. (7.74) reduces to the Poisson equation for the gravitational potential Φ:

D̄iD̄iΦ = 4πρ0. (7.75)

Substituting Eq. (7.73) for LmK and Eq. (7.71) for LmKij into Eq. (7.72) yields

LmAij = −DiDjN + N
[

Rij + 5

3
KKij − 2KikK k

j − 8π

(
Sij − 1

3
Sγij

)]

+ 1

3

[
DkDkN − N(R + K 2)

]
γij . (7.76)

Let us replace Kij by its expression in terms of Aij and K [Eq. (7.50)]: the terms in
the right-hand side of the above equation that involve K are then written

5K
3

Kij − 2KikKk
j − K2

3
γij = 5K

3

(
Aij + K

3
γij

)
− 2

(
Aik + K

3
γik

)(
Ak

j + K
3

δk
j

)

− K2

3
γij

= 1

3
KAij − 2AikAk

j .
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Accordingly Eq. (7.76) becomes

LmAij = −DiDjN + N
[

Rij + 1

3
KAij − 2AikAk

j − 8π

(
Sij − 1

3
Sγij

)]

+ 1

3

(
DkDkN − NR

)
γij . (7.77)

Remark 7.7 Regarding the matter terms, this equation involves only the stress tensor
S (more precisely its traceless part) and not the energy density E, contrary to the
evolution equation (7.71) for Kij , which involves both of them.

At this stage, we may say that we have split the dynamical Einstein equa-
tion (7.71) in two parts: a trace part: Eq. (7.74) and a traceless part: Eq. (7.77).
Let us now perform the conformal decomposition of these relations, by introduc-
ing Ãij . We considerÃij and notÂij , i.e. the scaling α = −4 and not α = −10, since
we are discussing time evolution equations.

Let us first transform Eq. (7.74). We can express the Laplacian of the lapse by
applying the divergence relation (7.34) to the vector vi = DiN = γ ijDjN =
Ψ −4γ̃ ij D̃jN = Ψ −4D̃iN

DiDiN = Ψ −6D̃i

(
Ψ 6DiN

)
= Ψ −6D̃i

(
Ψ 2D̃iN

)

= Ψ −4
(

D̃iD̃iN + 2D̃i ln Ψ D̃iN
)

. (7.78)

Besides, from Eqs. (7.50), (7.59) and (7.63),

KijK ij =
(

Aij + K
3

γij

) (
Aij + K

3
γ ij

)
= AijAij + K 2

3
= ÃijÃ

ij + K 2

3
. (7.79)

In view of Eqs. (7.78), (7.79) and (7.74) becomes

(
∂
∂t − Lβ

)
K = −Ψ −4

(
D̃iD̃iN + 2D̃i ln Ψ D̃iN

)
+ N

[
4π(E + S) +ÃijÃ

ij + K2

3

]
.

(7.80)

Let us now consider the traceless part, Eq. (7.77). We have, writing Aij = Ψ 4Ãij
and using Eq. (7.58),

LmAij = Ψ 4LmÃij + 4Ψ 3LmΨ Ãij = Ψ 4
[
LmÃij + 2

3

(
D̃kβk − NK

)
Ãij

]
.

(7.81)

Besides, from formulæ (7.28) and (7.31),

DiDjN = DiD̃jN = D̃iD̃jN − Ck
ijD̃kN

= D̃iD̃jN − 2
(
δk

iD̃j ln Ψ + δk
jD̃i ln Ψ − D̃k ln Ψ γ̃ij

)
D̃kN

= D̃iD̃jN − 2
(

D̃i ln Ψ D̃jN + D̃j ln Ψ D̃iN − D̃k ln Ψ D̃kN γ̃ij

)
. (7.82)
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In Eq. (7.77), we can now substitute expression (7.81) for LmAij , (7.82) for DiDjN ,
(7.42) for Rij , (7.78) for DkDkN and (7.43) for R. After some slight rearrangements,
we get

(
∂
∂t − Lβ

)
Ãij = − 2

3 D̃kβkÃij + N
[
KÃij − 2γ̃ klÃikÃjl − 8π

(
Ψ −4Sij − S

3 γ̃ij

)]

+Ψ −4
{

− D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j ln Ψ D̃iN

+ 1
3

(
D̃kD̃kN − 4D̃k ln Ψ D̃kN

)
γ̃ij

+N
[

R̃ij − 1
3 R̃γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i ln Ψ D̃j ln Ψ

+ 2
3

(
D̃kD̃k ln Ψ − 2D̃k ln Ψ D̃k ln Ψ

)
γ̃ij

]}
.

(7.83)

7.5.2 Hamiltonian Constraint

Substituting Eq. (7.45) for R and Eq. (7.79) into the Hamiltonian constraint equation
(5.70) yields

D̃iD̃iΨ − 1

8
R̃Ψ +

(
1

8
ÃijÃ

ij − 1

12
K 2 + 2πE

)
Ψ 5 = 0 . (7.84)

Let us consider the alternative scaling α = −10 to re-express the term ÃijÃ
ij

. By
combining Eqs. (7.63), (7.59), (7.67) and (7.70), we get the following relations

Â
ij = Ψ 6Ã

ij
and Âij = Ψ 6Ãij . (7.85)

HenceÃijÃ
ij = Ψ −12ÂijÂ

ij
and Eq. (7.84) becomes

D̃iD̃iΨ − 1

8
R̃Ψ + 1

8
Âij Â

ij
Ψ −7 +

(
2πE − 1

12
K 2

)
Ψ 5 = 0 . (7.86)

This is the Lichnerowicz equation. It has been obtained by Lichnerowicz in 1944
[1] in the special case E = 0 (vacuum) and K = 0 (maximal hypersurface4) (cf. also
Eq. (11.7) in Ref. [2]).

Remark 7.8 If one regards Eqs. (7.84) and (7.86) as non-linear elliptic equations for

Ψ , the negative power (–7) of Ψ in the Âij Â
ij

term in Eq. (7.86), as compared to
the positive power (+5) in Eq. (7.84), makes a big difference about the mathematical
properties of these two equations. This will be discussed in detail in Chap. 9.

4 To be discussed in Sect. 10.2.2.
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7.5.3 Momentum Constraint

The momentum constraint has been already written in terms of Â
ij

: it is Eq. (7.68).

Taking into account relation (7.85), we can easily rewrite it in terms ofÃ
ij

:

D̃jÃ
ij + 6Ã

ij
D̃j ln Ψ − 2

3
D̃iK = 8πΨ 4pi . (7.87)

7.5.4 Summary: Conformal 3+1 Einstein System

Let us gather Eqs. (7.58), (7.60), (7.80), (7.83), (7.84) and (7.87):

(
∂

∂t
− Lβ

)
Ψ = Ψ

6

(
D̃iβ

i − NK
)

(7.88)

(
∂

∂t
− Lβ

)
γ̃ij = −2NÃij − 2

3
D̃kβk γ̃ij (7.89)

(
∂
∂t − Lβ

)
K = −Ψ −4

(
D̃iD̃iN + 2D̃i ln Ψ D̃iN

)
+ N

[
4π(E + S) +ÃijÃ

ij + K2

3

]

(7.90)

(
∂
∂t − Lβ

)
Ãij = −2

3
D̃kβkÃij + N

[
KÃij − 2γ̃ klÃikÃjl − 8π

(
Ψ −4Sij − S

3
γ̃ij

)]

+Ψ −4
{

− D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j ln Ψ D̃iN

+ 1
3

(
D̃kD̃kN − 4D̃k ln Ψ D̃kN

)
γ̃ij

+N
[

R̃ij − 1
3 R̃γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i ln Ψ D̃j ln Ψ

+ 2
3

(
D̃kD̃k ln Ψ − 2D̃k ln Ψ D̃k ln Ψ

)
γ̃ij

]}
.

(7.91)

D̃iD̃iΨ − 1

8
R̃Ψ +

(
1

8
ÃijÃ

ij − 1

12
K 2 + 2πE

)
Ψ 5 = 0 (7.92)

D̃jÃ
ij + 6Ã

ij
D̃j ln Ψ − 2

3
D̃iK = 8πΨ 4pi . (7.93)
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For the last two equations, which are the constraints, we have the alternative forms

(7.86) and (7.68) in terms ofÂ
ij

(instead ofÃ
ij

):

D̃iD̃iΨ − 1

8
R̃Ψ + 1

8
ÂijÂ

ij
Ψ −7 +

(
2πE − 1

12
K 2

)
Ψ 5 = 0 , (7.94)

D̃jÂ
ij − 2

3
Ψ 6D̃iK = 8πΨ 10pi . (7.95)

Equations (7.88)–(7.93) constitute the conformal 3+1 Einstein system. An alter-
native form is constituted by Eqs. (7.88)–(7.91) and (7.94)–(7.95). In terms of the
original 3+1 Einstein system (5.68)–(5.71), Eq. (7.88) corresponds to the trace of the
kinematic equation (5.68) and Eq. (7.89) to its traceless part, Eq. (7.90) corresponds
to the trace of the dynamical Einstein equation (5.69) and Eq. (7.91) to its traceless
part, Eq. (7.92) or (7.94) is the Hamiltonian constraint (5.70), whereas Eq. (7.93) or
(7.95) is the momentum constraint.

If the system (7.88)–(7.93) is solved in terms of γ̃ij, Ãij (orÂij), Ψ and K, then
the physical metric γ and the extrinsic curvature K are recovered by

γij = Ψ 4γ̃ij (7.96)

Kij = Ψ 4
(

Ãij + 1

3
K γ̃ij

)
= Ψ −2Âij + 1

3
KΨ 4γ̃ij . (7.97)

7.6 Isenberg–Wilson–Mathews Approximation
to General Relativity

In 1978, Isenberg [14] was looking for some approximation to general relativity
beyond the Newtonian theory but without any gravitational wave. The simplest of the
approximations that he found amounts to imposing that the 3-metric γ is conformally
flat. In the framework of the discussion of Sect. 7.1, this is very natural since this
means that γ belongs to the conformal equivalence class of a flat metric and there are
no gravitational waves in a flat spacetime. This approximation has been reintroduced
by Wilson and Mathews in 1989 [15], who were not aware of Isenberg’s work [14]
(unpublished at that time, except for the proceeding [16]). It is now designed as the
Isenberg–Wilson–Mathews approximation (IWM ) to General Relativity [17], or
sometimes the conformal flatness condition (CFC ).
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In our notations, the IWM approximation amounts to setting

γ̃ = f (7.98)

and demanding that the background metric f is flat. Moreover the foliation (Σt)t∈R

must be chosen so that

K = 0, (7.99)

i.e. the hypersurfaces Σt have a vanishing mean curvature. Equivalently Σt is a
hypersurface of maximal volume, as it will be explained in Chap. 10. For this reason,
foliations with K = 0 are called maximal slicings.

Notice that while the condition (7.99) can always be satisfied by selecting a
maximal slicing for the foliation (Σt)t∈R, the requirement (7.98) is possible only
if the Cotton tensor of (Σt, γ ) vanishes identically, as we have seen in Sect. 7.1.
Otherwise, one deviates from general relativity.

Immediate consequences of (7.98) are that the connection D̃ is simply D̃ and that
the Ricci tensor R̃ vanishes identically, since f is flat. The conformal 3+1 Einstein
system (7.88)–(7.93) then reduces to

(
∂

∂t
− Lβ

)
Ψ = Ψ

6
D̄iβ

i (7.100)

(
∂

∂t
− Lβ

)
fij = −2NÃij − 2

3
D̄kβkfij (7.101)

0 = −Ψ −4 (
D̄iD̄iN + 2D̄i ln Ψ D̄iN

) + N
[
4π(E + S) +ÃijÃ

ij
]

(7.102)

(
∂

∂t
− Lβ

)
Ãij = −2

3
D̄kβkÃij + N

[
−2f klÃikÃjl − 8π

(
Ψ −4Sij − S

3
fij

)]

+ Ψ −4
{

− D̄iD̄jN + 2D̄i ln Ψ D̄jN + 2D̄j ln Ψ D̄iN

+ 1

3

(
D̄kD̄kN − 4D̄k ln Ψ D̄kN

)
fij

+ N
[

− 2D̄iD̄j ln Ψ + 4D̄i ln Ψ D̄j ln Ψ

+ 2

3

(
D̄kD̄k ln Ψ − 2D̄k ln Ψ D̄k ln Ψ

)
fij

]}

(7.103)

D̄iD̄iΨ +
(

1

8
ÃijÃ

ij + 2πE
)

Ψ 5 = 0 (7.104)

D̄jÃ
ij + 6Ã

ij
D̄j ln Ψ = 8πΨ 4pi . (7.105)
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Let us consider Eq. (7.101). By hypothesis ∂fij/∂t = 0 [Eq. (7.7)]. Moreover,

Lβ fij = βk D̄kfij︸ ︷︷ ︸
0

+fkjD̄iβ
k + fikD̄jβ

k = fkjD̄iβ
k + fikD̄jβ

k,

so that Eq. (7.101) becomes

2NÃij = fkjD̄iβ
k + fikD̄jβ

k − 2

3
D̄kβkfij .

UsingÃ
ij = f ikf jlÃkl , we may rewrite this equation as

Ã
ij = 1

2N
(Lβ)ij, (7.106)

where

(Lβ)ij := D̄iβ j + D̄jβ i − 2

3
D̄kβkf ij (7.107)

is the conformal Killing operator associated with the metric f (cf. Appendix A).

Consequently, the term D̄jÃ
ij

which appears in Eq. (7.105) is expressible in terms of
β as

D̄jÃ
ij = D̄j

[
1

2N
(Lβ)ij

]
= 1

2N
D̄j

(
D̄iβ j + D̄jβ i − 2

3
D̄kβkf ij

)
− 1

2N2 (Lβ)ij D̄jN

= 1

2N

(
D̄j D̄

jβ i + 1

3
D̄iD̄jβ

j − 2Ã
ij

D̄jN
)

, (7.108)

where we have used D̄jD̄iβ j = D̄iD̄jβ
j since f is flat. Inserting Eq. (7.108) into

Eq. (7.105) yields

D̄jD̄jβ i + 1

3
D̄iD̄jβ

j + 2Ã
ij (

6ND̄j ln Ψ − D̄jN
) = 16πNΨ 4pi . (7.109)

The IWM system is formed by Eqs. (7.102), (7.104) and (7.109), which we rewrite
as

ΔN + 2D̄i ln Ψ D̄iN = NΨ 4
[
4π(E + S) +ÃijÃ

ij
]

(7.110)

ΔΨ +
(

1

8
ÃijÃ

ij + 2πE
)

Ψ 5 = 0 (7.111)

Δβ i + 1

3
D̄iD̄jβ

j + 2Ã
ij (

6ND̄j ln Ψ − D̄jN
) = 16πNΨ 4pi , (7.112)
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where

Δ := D̄iD̄i (7.113)

is the flat-space Laplacian. In the above equations,Ã
ij

is to be understood, not as an
independent variable, but as the function of N and β i defined by Eq. (7.106).

The IWM system (7.110)–(7.112) is a system of three elliptic equations (two
scalar equations and one vector equation) for the three unknowns N, Ψ and β i . The
physical 3-metric is fully determined by Ψ

γij = Ψ 4fij, (7.114)

so that, once the IWM system is solved, the full spacetime metric g can be recon-
structed via Eq. (5.49).

Remark 7.9 In the original article [14], Isenberg has derived the system
(7.110)–(7.112) from a variational principle based on the Hilbert action (5.100), by
restricting γij to take the form (7.114) and requiring that the momentum conjugate
to Ψ vanishes.

That the IWM scheme constitutes some approximation to general relativity is clear
because the solutions (N, Ψ, β i) to the IWM system (7.110)–(7.112) do not in general
satisfy the remaining equations of the full conformal 3+1 Einstein system, i.e. Eqs.
(7.100) and (7.103). However, the IWM approximation

• is exact for spherically symmetric spacetimes, because (i) any such spacetime
symmetric spacetime admits locally a maximal slicing (K = 0) [18] and (ii) the
Cotton tensor vanishes for any spherically symmetric 3-space (Σt, γ ); a concrete
example is Schwarzschild spacetime (cf. Example 7.1);

• is very accurate for axisymmetric rotating neutron stars [19];
• is correct at the 1-PN order in the post-Newtonian expansion of general relativity.

The IWM approximation has been widely used in relativistic astrophysics, to compute
binary neutron star mergers [20–22] gravitational collapses of stellar cores [23–27],
as well as quasi-equilibrium configurations of binary neutron stars or binary black
holes (cf. Sect. 9.4).

It turned out that in some highly relativistic situations, the IWM system
(7.110–7.112) may suffer from some non-uniqueness issue that prevents numerical
codes to converge [28]. This non-uniqueness is related to that of the XCTS system
that will be discussed in Sect. 9.3.4. A solution has been found [26, 28, 29] and
consists in solving an extra vector elliptic equation, in addition to the shift equation
(7.112). The resulting scheme is then called XCFC (for extended conformal flatness
condition) [28, 30]. A recent implementation of XCFC can be found in [31].
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Chapter 8
Asymptotic Flatness and Global Quantities

Abstract After providing a definition of asymptotic flatness, we introduce the global
quantities that one may associate to the spacetime or to each slice of the 3 + 1
foliation: the ADM mass, the ADM linear momentum, the total angular momentum,
the Komar mass and the Komar angular momentum. For each of these quantities, we
derive expressions in terms of the 3+1 objects and provide some concrete examples.

8.1 Introduction

Global quantities are important characterizations of a given spacetime or a given
hypersurface of a 3+1 slicing. Such quantities encompass various notions of mass,
linear momentum and angular momentum. There are many such concepts in general
relativity and we refer the reader to Refs. [1, 2] for reviews in this vast topic. Here
we limit ourselves to quantities which are directly connected to the 3+1 formalism.
In particular, we do not discuss quantities associated with null infinity, like the
Bondi mass. In the absence of any symmetry, the global quantities are defined only
for asymptotically flat spacetimes. So we shall start by defining this notion.

8.2 Asymptotic Flatness

The concept of asymptotic flatness applies to stellar type objects, modeled as if they
were alone in an otherwise empty universe (the so-called isolated bodies). Of course,
most cosmological spacetimes are not asymptotically flat.

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 159
DOI: 10.1007/978-3-642-24525-1_8, © Springer-Verlag Berlin Heidelberg 2012
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8.2.1 Definition

We consider a globally hyperbolic1 spacetime (M , g) foliated by a family (Σt )t∈R of
spacelike hypersurfaces. Let γ and K be respectively the induced metric and extrinsic
curvature of the hypersurfaces Σt . One says that the spacetime is asymptotically
flat iff there exists, on each slice Σt , a Riemannian “background” metric f such that
[3, 4, 5]

• f is flat (Riem( f ) = 0), except possibly on a compact domain B of Σt (the
“strong field region”);

• there exists a coordinate system (xi ) = (x, y, z) on Σt such that outside B,

the components of f are fi j = diag(1, 1, 1) (“Cartesian-type coordinates”)
and the variable r := √

x2 + y2 + z2 can take arbitrarily large values on Σt ;
• when r → +∞, the components of γ with respect to the coordinates (xi ) satisfy

γi j = fi j + O(r−1), (8.1a)

∂γi j

∂xk
= O(r−2); (8.1b)

• when r → +∞, the components of K with respect to the coordinates (xi ) satisfy

Ki j = O(r−2), (8.2a)

∂Ki j

∂xk
= O(r−3). (8.2b)

The “region” r → +∞ is called spatial infinity and is denoted i0.

Remark 8.1 There exist other definitions of asymptotic flatness which are not based
on any coordinate system nor background flat metric (see e.g. Ref. [6] or Chap.
11 in Wald’s textbook [7]). In particular, the spatial infinity i0 can be rigorously
defined as a single point in some “extended” spacetime (M̂ , ĝ) in which (M , g)

can be embedded with g conformal to ĝ. However the present definition is perfectly
adequate for our purposes.

Remark 8.2 The requirement (8.1b) excludes the presence of gravitational waves at
spatial infinity. Indeed for gravitational waves propagating in the radial direction:

γi j = fi j + Fi j (t − r)

r
+ O(r−2),

where Fi j is an oscillating function (for instance Fi j (t) = cos(ωt)), which satisfies
Fi j (t − r) = O(1) and F ′

i j (t − r) = O(1). This fulfills condition (8.1a) but

1 See Sect. 4.2.1.
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∂γi j

∂xk
= − F ′

i j (t − r)

r

xk

r
− Fi j (t − r)

r2

xk

r
+ O(r−2)

is O(r−1) since F ′
i j (t − r) = O(1). This violates condition (8.1b). Notice that the

absence of gravitational waves at spatial infinity is not a serious physical restriction,
since one may consider that any isolated system has started to emit gravitational
waves at a finite time in the past and that these waves have not reached the spatial
infinity yet.

8.2.2 Asymptotic Coordinate Freedom

Obviously the above definition of asymptotic flatness depends both on the foliation
(Σt )t∈R and on the coordinates (xi ) chosen on each leaf Σt . It is of course important
to assess whether this dependence is strong or not. In other words, we would like to
determine the class of coordinate changes (xα) = (t, xi ) → (x ′α) = (t ′, x ′i ) which
preserve the asymptotic properties (8.1)–(8.2). The answer is that the coordinates
(x ′α) must be related to the coordinates (xα) by [8]

x ′α = Λα
μxμ + cα(θ, ϕ) + O(r−1) (8.3)

where Λα
β is a Lorentz matrix and the cα’s are four functions of the angles (θ, ϕ)

related to the coordinates (xi ) = (x, y, z) by the standard formulæ:

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ. (8.4)

The group of transformations generated by (8.3) is related to the Spi group
(for Spatial infinity) introduced by Ashtekar and Hansen [6, 9]. However the pre-
cise relation is not clear because the definition of asymptotic flatness used by these
authors is not expressed as decay conditions for γi j and Ki j , as in Eqs. (8.1)–(8.2).

Notice that Poincaré transformations are contained in the transformation group
defined by (8.3): they simply correspond to the case cα(θ, ϕ) = const. The trans-
formations with cα(θ, ϕ) �= const and Λα

β = δα
β constitute “angle-dependent

translations” and are called supertranslations.
Note that if the Lorentz matrix Λα

β involves a boost, the transformation (8.3)
implies a change of the 3+1 foliation (Σt )t∈R, whereas if Λα

β corresponds only to
some spatial rotation and the cα’s are constant, the transformation (8.3) describes
some change of Cartesian-type coordinates (xi ) (rotation + translation) within the
same hypersurface Σt .
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8.3 ADM Mass

8.3.1 Definition from the Hamiltonian Formulation of GR

In the short introduction to the Hamiltonian formulation of general relativity given
in Sect. 5.5, we have for simplicity discarded any boundary term in the action. How-
ever, because the gravitational Lagrangian density (the scalar curvature 4R) contains
second order derivatives of the metric tensor (and not only first order ones, which is
a particularity of general relativity with respect to other field theories), the precise
action should be [7, 8, 10, 11]

S =
∫

V

4R
√−g d4x + 2

∮

∂V
(Y − Y0)

√
h d3 y, (8.5)

where ∂V is the boundary of the domain V (∂V is assumed to be a timelike hypersur-
face), Y the trace of the extrinsic curvature [i.e. minus three times the mean curvature,
cf. Eq. (3.21)] of ∂V embedded in (M , g) and Y0 the trace of the extrinsic curvature
of ∂V embedded in (M , η), where η is a Lorentzian metric on M that is flat around
∂V . Finally

√
h d3 y is the volume element induced by g on the hypersurface ∂V ,

h being the determinant of the components of the induced metric h on ∂V with
respect to the coordinates (yi ) on ∂V . The boundary term in (8.5) guarantees that
the variation of S with the values of g (and not its derivatives) held fixed at ∂V leads
to the Einstein equation. Otherwise, from the volume term alone (Hilbert action),
one has to held fixed g and all its derivatives at ∂V .

Let

St := ∂V ∩ Σt . (8.6)

We assume that St has the topology of a sphere. The gravitational Hamiltonian
derived from the action (8.5) (see [11] for details) contains an additional boundary
term with respect to the Hamiltonian (5.111) obtained in Sect. 5.5:

H = −
∫

Σ int
t

(
NC0 − 2βi Ci

) √
γ d3x−2

∮

St

[
N (κ − κ0) + βi (Ki j − Kγi j )s

j
] √

q d2 y,

(8.7)
where Σ int

t is the part of Σt bounded by St , κ is the trace of the extrinsic curvature of
St embedded in (Σt , γ ), and κ0 the trace of the extrinsic curvature of St embedded
in (Σt , f ) ( f being the metric introduced in Sect. 8.2), s is the unit normal to St in
Σt , oriented towards the asymptotic region, and

√
q d2 y denotes the surface element

induced by the spacetime metric on St , q being the induced metric, ya = (y1, y2)

some coordinates on St [for instance ya = (θ, ϕ) ] and q := det(qab).

For solutions of Einstein equation, the constraints are satisfied: C0 = 0 and
Ci = 0, so that the value of the Hamiltonian reduces to

Hsolution = −2
∮

St

[
N (κ − κ0) + β i (Ki j − Kγi j )s

j
] √

q d2 y. (8.8)
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The total energy contained in Σt is then defined as the numerical value of the Hamil-
tonian for solutions, taken on a surface St at spatial infinity (i.e. for r → +∞) and
for coordinates (t, xi ) that could be associated with some asymptotically inertial
observer, i.e. such that N = 1 and β = 0. From Eq. (8.8), we get (after restoration
of a (16π)−1 factor)

MADM := − 1

8π
lim

St →∞

∮

St

(κ − κ0)
√

q d2 y . (8.9)

This total energy is called the ADM mass of the slice Σt . By evaluating the extrinsic
curvature traces κ and κ0, it can be shown that Eq. (8.9) can be written

MADM = 1

16π
lim

St →∞

∮

St

[
D̄ jγi j − D̄i ( f klγkl)

]
si√q d2 y , (8.10)

where D̄ stands for the connection associated with the metric f and, as above,
si stands for the components of unit normal to St within Σt and oriented towards
the exterior of St . In particular, if one uses the Cartesian-type coordinates (xi )

involved in the definition of asymptotic flatness (Sect. 8.2), then D̄i = ∂/∂xi and
f kl = δkl and the above formula becomes

MADM = 1

16π
lim

St →∞

∮

St

(
∂γi j

∂x j
− ∂γ j j

∂xi

)
si√q d2 y. (8.11)

Notice that thanks to the asymptotic flatness requirement (8.1b), this integral
takes a finite value: the O(r2) part of

√
q d2 y is compensated by the O(r−2) parts

of ∂γi j/∂x j and ∂γ j j/∂xi .

Example 8.1 Let us consider Schwarzschild spacetime and use the standard
Schwarzschild coordinates (xα) = (t, r, θ, φ):

gμvdxμdxv = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 +r2(dθ2 +sin2 θ dϕ2).

(8.12)
Let us take for Σt the hypersurface of constant Schwarzschild coordinate time t.
Then we read on (8.12) the components of the induced metric in the coordinates
(xi ) = (r, θ, ϕ):

γi j = diag

[(
1 − 2m

r

)−1

, r2, r2 sin2 θ

]

. (8.13)
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On the other side, the components of the flat metric in the same coordinates
are

fi j = diag
(

1, r2, r2 sin2 θ
)

and f i j = diag
(

1, r−2, r−2 sin−2 θ
)

.

(8.14)
Let us now evaluate MADM by means of the integral (8.10) (we cannot use
formula (8.11) because the coordinates (xi ) are not Cartesian-like). It is quite
natural to take for St the sphere r = const in the hypersurface Σt . Then ya =
(θ, ϕ),

√
q = r2 sin θ and, at spatial infinity, si√q d2 y = r2 sin θ dθ dϕ(∂r )

i ,

where ∂r is the natural basis vector associated with the coordinate r: (∂r )
i =

(1, 0, 0). Consequently, Eq. (8.10) becomes

MADM = 1

16π
lim

r→∞

∮

r=const

[
D̄ jγr j − D̄r ( f klγkl)

]
r2 sin θ dθ dϕ, (8.15)

with

f klγkl = γrr + 1

r2 γθθ + 1

r2 sin2 θ
γϕϕ =

(
1 − 2m

r

)−1

+ 2,

and since f klγkl is a scalar field,

D̄r ( f klγkl) = ∂

∂r
( f klγkl) = −

(
1 − 2m

r

)−2 2m

r2 . (8.16)

There remains to evaluate D̄ jγr j . One has

D̄ jγr j = f jk D̄kγr j = D̄rγrr + 1

r2 D̄θγrθ + 1

r2 sin2 θ
D̄ϕγrϕ,

with the covariant derivatives given by (taking into account the form (8.13)
of γi j )

D̄rγrr = ∂γrr

∂r
− 2Γ̄ i

rrγir = ∂γrr

∂r
− 2Γ̄ r

rrγrr

D̄θγrθ = ∂γrθ

∂θ
− Γ̄ i

θrγiθ − Γ̄ i
θθ γri = −Γ̄ θ

θrγθθ − Γ̄ r
θθ γrr

D̄ϕγrϕ = ∂γrϕ

∂ϕ
− Γ̄ i

ϕrγiϕ − Γ̄ i
ϕϕγri = −Γ̄ ϕ

ϕrγ ϕϕ − Γ̄ r
ϕϕγrr ,

where the Γ̄ k
i j ’s are the Christoffel symbols of the connection D̄ with respect

to the coordinates (xi ). The non-vanishing ones are
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Γ̄ r
θθ = −r and Γ̄ r

ϕϕ = −r sin2 θ (8.17a)

Γ̄ θ
rθ = Γ̄ θ

θr = 1

r
and Γ̄ θ

ϕϕ = − cos θ sin θ (8.17b)

Γ̄ ϕ
rϕ = Γ̄ ϕ

ϕr = 1

r
and Γ̄ ϕ

θϕ = Γ̄ ϕ
ϕθ = 1

tan θ
. (8.17c)

Hence

D̄ jγr j = ∂

∂r

[(
1 − 2m

r

)−1
]

+ 1

r2

[

−1

r
× r2 + r ×

(
1 − 2m

r

)−1
]

+ 1

r2 sin2 θ

[

−1

r
× r2 sin2 θ + r sin2 θ ×

(
1 − 2m

r

)−1
]

D̄ jγr j = 2m

r2

(
1 − 2m

r

)−2 (
1 − 4m

r

)
. (8.18)

Combining Eqs. (8.16) and (8.18), we get

D̄ jγr j − D̄r ( f klγkl) = 2m

r2

(
1 − 2m

r

)−2 (
1 − 4m

r
+ 1

)
= 4m

r2

(
1 − 2m

r

)−1

∼ 4m

r2 when r → ∞,

so that the integral (8.15) results in

MADM = m. (8.19)

We conclude that the ADM mass of any hypersurface t = const of Schwarz-
schild spacetime is nothing but the mass parameter m of the Schwarzschild
solution.

Example 8.2 (counter-example) On Schwarzschild spacetime, the Painlevé–
Gullstrand coordinates (t, r, θ, ϕ) are defined as follows (see e.g. Ref. [12]):
r is nothing but the standard Schwarzschild radial coordinate, whereas the
Painlevé–Gullstrand coordinate t is related to the Schwarzschild time coordi-
nate tS (i.e. the coordinate t of Example 8.1 ) by

t = tS + 4m

(√
r

2m
+ 1

2
ln

∣
∣
∣
∣

√
r/2m − 1√
r/2m + 1

∣
∣
∣
∣

)
. (8.20)
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The metric components with respect to Painlevé–Gullstrand coordinates are
remarkably simple, being given by

gμvdxμdxv = −dt2 +
(

dr +
√

2m

r
dt

)2

+ r2(dθ2 + sin2 θ dϕ2). (8.21)

By comparing with the general line element (5.50), we read on the above
expression that

N = 1 (8.22a)

β i =
(√

2m

r
, 0, 0

)

(8.22b)

γi j = diag(1, r2, r2 sin2 θ). (8.22c)

We notice that the metric γ on the hypersurfaces Σt is flat : γ = f . Hence if
we apply naively formula (8.10), we get MADM = 0, whereas one would have
expected MADM = m as in Example 8.1! This surprising result stems from
the fact that the Painlevé–Gullstrand slicing (Σt )t∈R is not asymptotically flat
in the sense defined in Sect. 8.2.1: whereas the conditions (8.1) are obviously
satisfied by the flat metric γ , the conditions (8.2) on the extrinsic curvature
are violated. Indeed, let us evaluate Ki j via formulas (5.68) and (5.75) with
γi j = fi j and N = 1. We get

Ki j = 1

2

(
∂βi

∂x j
+ ∂β j

∂xi
− 2Γ̄ k

i jβk

)
.

Given the values (8.22b) for β i and (8.17) for Γ̄ k
i j , we conclude that the only

non-vanishing components of Ki j are

Krr = −
√

m

2r3 , Kθθ = √
2mr , Kϕϕ = √

2mr sin2 θ. (8.23)

This implies that the Cartesian components of K have the asymptotic behavior

Ki j = O(r−3/2).

This decay is too slow to comply with the asymptotic flatness condition (8.2a).
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8.3.2 Expression in Terms of the Conformal Decomposition

Let us introduce the conformal metric γ̃ and conformal factor Ψ associated to γ

according to the prescription given in Sect. 7.2.3, taking for the background metric
f the same metric as that involved in the definition of asymptotic flatness and ADM
mass:

γ = Ψ 4γ̃ , (8.24)

with, in the Cartesian-type coordinates (xi ) = (x, y, z) introduced in Sect. 8.2:

det(γ̃i j ) = 1. (8.25)

This is the property (7.18) since f = det( fi j ) = 1 ( fi j = diag(1, 1, 1)). The
asymptotic flatness conditions (8.1) impose

Ψ = 1 + O(r−1) and
∂Ψ

∂xk
= O(r−2) (8.26)

and

γ̃i j = fi j + O(r−1) and
∂γ̃i j

∂xk
= O(r−2). (8.27)

Thanks to the decomposition (8.24), the integrand of the ADM mass formula
(8.10) is

D̄ jγi j − D̄i ( f klγkl) = 4 Ψ 3
︸︷︷︸
∼1

D̄ jΨ γ̃i j︸︷︷︸
∼ fi j

+ Ψ 4
︸︷︷︸
∼1

D̄ j γ̃i j − 4 Ψ 3
︸︷︷︸
∼1

D̄iΨ f kl γ̃kl︸ ︷︷ ︸
∼3

− Ψ 4
︸︷︷︸
∼1

D̄i ( f kl γ̃kl),

where the ∼ ’s denote values when r → ∞, taking into account (8.26) and (8.27).
Thus we have

D̄ jγi j − D̄i ( f klγkl) ∼ −8D̄iΨ + D̄ j γ̃i j − D̄i ( f kl γ̃kl). (8.28)

From (8.26) and (8.27), D̄iΨ = O(r−2) and D̄ j γ̃i j = O(r−2). Let us show that
the unit determinant condition (8.25) implies D̄i ( f kl γ̃kl) = O(r−3) so that this term
actually does not contribute to the ADM mass integral. Let us write

γ̃i j =: fi j + εi j , (8.29)

with according to Eq. (8.27), εi j = O(r−1). Then

f kl γ̃kl = 3 + εxx + εyy + εzz (8.30)
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and

D̄i ( f kl γ̃kl) = ∂

∂xi
( f kl γ̃kl) = ∂

∂xi

(
εxx + εyy + εzz

)
. (8.31)

Now the determinant of γ̃i j is

det(γ̃i j ) = det

⎛

⎝
1 + εxx εxy εxz

εxy 1 + εyy εyz

εxz εyz 1 + εzz

⎞

⎠

= 1 + εxx + εyy + εzz + εxxεyy + εxxεzz + εyyεzz − ε2
xy − ε2

xz − ε2
yz

+ εxxεyyεzz + 2εxyεxzεyz − εxxε
2
yz − εyyε

2
xz − εzzε

2
xy .

Requiring det(γ̃i j ) = 1 implies then

εxx + εyy + εzz = − εxxεyy − εxxεzz − εyyεzz + ε2
xy + ε2

xz + ε2
yz

− εxxεyyεzz − 2εxyεxzεyz + εxxε
2
yz + εyyε

2
xz + εzzε

2
xy .

Since according to (8.27), εi j = O(r−1) and ∂εi j/∂xk = O(r−2), we conclude that

∂

∂xi

(
εxx + εyy + εzz

) = O(r−3),

i.e. in view of (8.31),

D̄i ( f kl γ̃kl) = O(r−3). (8.32)

Thus in Eq. (8.28), only the first two terms in the right-hand side contribute to the
ADM mass integral, so that formula (8.10) becomes

MADM = − 1

2π
lim

St →∞

∮

St

si
(

D̄iΨ − 1

8
D̄ j γ̃i j

) √
q d2 y . (8.33)

Example 8.3 Let us return to Example 7.1 (Sect. 7.2.3), namely Schwarzschild
spacetime in isotropic coordinates (t, r, θ, ϕ) (although we use the same sym-
bol, the r used here is different from the Schwarzschild coordinate r of Example
8.1 above). The conformal factor was found to be Ψ = 1+m/(2r) [Eq. (7.24)]
and the conformal metric to be γ̃ = f . Then D̄ j γ̃i j = 0 and only the first term
remains in the integral (8.33):
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MADM = − 1

2π
lim

r→∞

∮

r=const

∂Ψ

∂r
r2 sin θ dθ dϕ,

with

∂Ψ

∂r
= ∂

∂r

(
1 + m

2r

)
= − m

2r2 ,

so that we get

MADM = m,

i.e. we recover the result (8.19), which was obtained by means of different
coordinates (Schwarzschild coordinates).

8.3.3 Newtonian Limit

To check that at the Newtonian limit, the ADM mass reduces to the usual definition
of mass, let us consider the weak field metric given by Eq. (6.12). We have found
in Sect. 7.2.3 that the corresponding conformal metric is γ̃ = f and the conformal
factor Ψ = 1 − Φ/2 [Eq. (7.25)], where Φ reduces to the gravitational potential
at the Newtonian limit. Accordingly, D̄ j γ̃i j = 0 and D̄iΨ = − 1

2 D̄iΦ, so that
Eq. (8.33) becomes

MADM = 1

4π
lim

St →∞

∮

St

si D̄iΦ
√

q d2 y.

To take the Newtonian limit, we may assume that Σt has the topology of R
3 and trans-

form the above surface integral to a volume one by means of the Gauss–Ostrogradsky
theorem:

MADM = 1

4π

∫

Σt

D̄i D̄iΦ
√

f d3x . (8.34)

Now, at the Newtonian limit, Φ is a solution of the Poisson equation

D̄i D̄iΦ = 4πρ, (8.35)

where ρ is the mass density (remember we are using units in which Newton’s grav-
itational constant G is unity). Hence Eq. (8.34) becomes

MADM =
∫

Σt

ρ
√

f d3x, (8.36)
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which shows that at the Newtonian limit, the ADM mass is nothing but the total mass
of the considered system.

8.3.4 Positive Energy Theorem

Since the ADM mass represents the total energy of a gravitational system, it is
important to show that it is always positive, at least for “reasonable” models of
matter (take ρ < 0 in Eq. (8.36) and you will get MADM < 0 . . .). If negative values
of the energy would be possible, then a gravitational system could decay to lower
and lower values and thereby emit an unbounded amount of energy via gravitational
radiation.

The positivity of the ADM mass has been hard to establish. The complete proof
was eventually given in 1981 by Schoen and Yau [13]. A simplified proof has been
found shortly after by Witten [14]. Schoen, Yau and Witten have shown that if the
matter content of spacetime obeys the dominant energy condition, then MADM ≥ 0.

Furthermore, MADM = 0 if and only if Σt is a hypersurface of Minkowski spacetime.
The dominant energy condition is the following requirement on the matter

stress-energy tensor T : for any timelike and future-directed vector v, the vector
−−→

T (v) defined by Eq. (2.39)2 must be a future-directed timelike or null vector. If
v is the 4-velocity of some observer, −−→

T (v) is the energy-momentum density 4-
vector as measured by the observer and the dominant energy condition means that
this vector must be causal. In particular, the dominant energy condition implies the
weak energy condition, namely that for any timelike and future-directed vector v,
T (v, v) ≥ 0. If again v is the 4-velocity of some observer, the quantity T (v, v) is noth-
ing but the energy density as measured by that observer [cf. Eq. (5.4)], and the weak
energy condition simply stipulates that this energy density must be non-negative. In
short, the dominant energy condition means that the matter energy must be positive
and that it must not travel faster than light.

The dominant energy condition is easily expressible in terms of the matter
energy density E and momentum density p, both measured by the Eulerian observer
and introduced in Sect. 5.2.1. Indeed, from the 3+1 split (5.14) of T , the energy-
momentum density 4-vector relative to the Eulerian observer is found to be

J := −−→
T (n) = En + −→p . (8.37)

Then, since n · −→p = 0, J · J = −E2 + −→p · −→p . Requiring that J is timelike or
null means J · J ≤ 0 and that it is future-oriented amounts to E ≥ 0 (since n is
itself future-oriented). Hence the dominant energy condition is equivalent to the two
conditions E2 ≥ −→p · −→p and E ≥ 0. Since −→p is always a spacelike vector, these
two conditions are actually equivalent to the single requirement

2 In index notation, −−→
T (v) is the vector −T α

μvμ.
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E ≥
√−→p · −→p . (8.38)

This justifies the term dominant energy condition.

8.3.5 Constancy of the ADM Mass

Since the Hamiltonian H given by Eq. (8.7) depends on the configuration variables
(γi j , N , β i ) and their conjugate momenta (π i j , π N = 0, πβ = 0), but not explicitly
on the time t, the associated energy is a constant of motion:

d
dt

MADM = 0 . (8.39)

Note that this property is not obvious when contemplating formula (8.10), which
expresses MADM as an integral over St .

8.4 ADM Momentum

8.4.1 Definition

As the ADM mass is associated with time translations at infinity [taking N = 1
and β = 0 in Eq. (8.8)], the ADM momentum is defined as the conserved quantity
associated with the invariance of the action with respect to spatial translations. With
respect to the Cartesian-type coordinates (xi ) introduced in Sect. 8.2, three privileged
directions for translations at spatial infinity are given by the three vectors (∂ i )i∈{1,2,3}.
The three conserved quantities are then obtained by setting N = 0 and β i = (∂ j )

i

in Eq. (8.8) [8, 10]:

Pi := 1

8π
lim

St →∞

∮

St

(
K jk − Kγ jk

)
(∂ i )

j sk√q d2 y , i ∈ {1, 2, 3}. (8.40)

Notice that the asymptotic flatness condition (8.2a) ensures that Pi is a finite quantity.
The three numbers (P1, P2, P3) define the ADM momentum of the hypersurface Σt .

The values Pi depend upon the choice of the coordinates (xi ) but the set (P1, P2, P3)

transforms as the components of a linear form under a change of Cartesian coordinates
(xi ) → (x ′i ) that asymptotically corresponds to a rotation and/or a translation.
Therefore (P1, P2, P3) can be regarded as a linear form which “lives” at the “edge”
of Σt . It can be regarded as well as a vector since the duality vector/linear forms is
trivial in the asymptotically Euclidean space.
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Example 8.4 For foliations associated with the standard coordinates of
Schwarzschild spacetime (e.g. Schwarzschild coordinates (8.12) or isotropic
coordinates (7.23)), the extrinsic curvature vanishes identically: K = 0, so
that Eq. (8.40) yields

Pi = 0. (8.41)

For a non trivial example based on a “boosted” Schwarzschild solution, see
Ref. [4].

8.4.2 ADM 4-Momentum

Not only (P1, P2, P3) behaves as the components of a linear form, but the set of four
numbers

PADM
α := (−MADM, P1, P2, P3) (8.42)

behaves as the components of a 4-dimensional linear form any under coordinate
change (xα) = (t, xi ) → (x ′α) = (t ′, x ′i ) which preserves the asymptotic condi-
tions (8.1)–(8.2), i.e. any coordinate change of the form (8.3). In particular, PADM

α

is transformed in the proper way under the Poincaré group:

P ′ADM
α = (Λ−1)μα PADM

μ . (8.43)

This last property has been shown first by Arnowitt, Deser and Misner [15]. For this
reason, PADM

α is considered as a linear form which “lives” at spatial infinity and is
called the ADM 4-momentum.

8.5 Angular Momentum

8.5.1 The Supertranslation Ambiguity

Generically, the angular momentum is the conserved quantity associated with the
invariance of the action with respect to rotations, in the same manner as the linear
momentum is associated with the invariance with respect to translations. Then one
might naively define the total angular momentum of a given slice Σt by an integral
of the type (8.40) but with ∂ i being replaced by a rotational Killing vector φ of the
flat metric f . More precisely, in terms of the Cartesian coordinates (xi ) = (x, y, z)
introduced in Sect. 8.2, the three vectors (φi )i∈{1,2,3} defined by
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φx = −z∂ y + y∂ z (8.44a)

φy = −x∂ z + z∂x (8.44b)

φz = −y∂ x + x∂ y (8.44c)

are three independent Killing vectors of f , corresponding to a rotation about respec-
tively the x-axis, y-axis and the z-axis. Then one may defined the three numbers

Ji := 1

8π
lim

St →∞

∮

St

(
K jk − Kγ jk

)
(φi )

j sk√q d2 y, i ∈ {1, 2, 3}. (8.45)

The problem is that the quantities Ji hence defined depend upon the choice of the
coordinates and, contrary to PADM

α , do not transform as the components of a vector
under any coordinate change (xα) = (t, xi ) → (x ′α) = (t ′, x ′i ) that preserves the
asymptotic properties (8.1)–(8.2), i.e. a transformation of the type (8.3). As discussed
by York [3, 4], the problem arises because of the existence of the supertranslations
(cf. Sect. 8.2.2) in the permissible coordinate changes (8.3).

Remark 8.3 Independently of the above coordinate ambiguity, one may notice that
the asymptotic flatness conditions (8.1)–(8.2) are not sufficient, by themselves, to
guarantee that the integral (8.45) takes a finite value when St → ∞, i.e. when r →
∞. Indeed, Eq. (8.44) shows that the Cartesian components of the rotational vectors
behave like (φi )

j ∼ O(r), so that Eq. (8.2a) implies only
(
K jk − Kγ jk

)
(φi )

j =
O(r−1). It is the contraction with the unit normal vector sk which ensures

(
K jk − Kγ jk

)
(φi )

j sk = O(r−2)

and hence that Ji is finite. This is clear for the Kγ jk(φi )
j sk part because the vectors

φi given by Eq. (8.44) are all orthogonal to s ∼ x/r∂x + y/r∂ y + z/r∂ z . For the
K jk(φi )

j sk part, this turns out to be true in practice, as we shall see on the specific
example of Kerr spacetime in Sect. 8.6.3.

8.5.2 The “Cure”

In view of the above coordinate dependence problem, one may define the angular
momentum as a quantity which remains invariant only with respect to a subclass of
the coordinate changes (8.3). This is made by imposing decay conditions stronger
than (8.1)–(8.2). For instance, York [3] has proposed the following conditions3 on
the flat divergence of the conformal metric and the trace of the extrinsic curvature:

∂γ̃i j

∂x j
= O(r−3), (8.46)

3 Actually the first condition proposed by York, Eq. (90) of Ref. [3], is not exactly (8.46) but can
be shown to be equivalent to it; see also Sec. V of Ref. [16].
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K = O(r−3). (8.47)

Clearly these conditions are stronger than respectively (8.27) and (8.2a). Actually
they are so severe that they exclude some well known coordinates that one would like
to use to describe asymptotically flat spacetimes, for instance the standard Schwarz-
schild coordinates (8.12) for the Schwarzschild solution. For this reason, conditions
(8.46) and (8.47) are considered as asymptotic gauge conditions, i.e. conditions
restricting the choice of coordinates, rather than conditions on the nature of spacetime
at spatial infinity. Condition (8.46) is called the quasi-isotropic gauge. The isotropic
coordinates (7.23) of the Schwarzschild solution trivially belong to this gauge (since
γ̃i j = fi j for them). Condition (8.47) is called the asymptotically maximal gauge,
since for maximal hypersurfaces K vanishes identically. York has shown that in

the gauge (8.46)–(8.47), the angular momentum as defined by the integral (8.45) is
carried by the O(r−3) piece of K (the O(r−2) piece carrying the linear momentum
Pi ) and is invariant (i.e. behaves as a vector) for any coordinate change within this
gauge.

Alternative decay requirements have been proposed by other authors to fix the
ambiguities in the angular momentum definition (see e.g. [17] and references therein).
For instance, Regge and Teitelboim [10] impose a specific form and some parity
conditions on the coefficient of the O(r−1) term in Eq. (8.1a) and on the coefficient
of the O(r−2) term in Eq. (8.2a) (cf. also [8]).

As we shall see in Sect. 8.6.3, in the particular case of an axisymmetric spacetime,
there exists a unique definition of the angular momentum, which is independent of
any coordinate system.

Remark 8.4 In the literature, there is often mention of the “ADM angular momen-
tum”, on the same footing as the ADM mass and ADM linear momentum. But as
discussed above, there is no such thing as the “ADM angular momentum”. One has
to specify a gauge first and define the angular momentum within that gauge. In par-
ticular, there is no mention whatsoever of angular momentum in the original ADM
article [15].

8.5.3 ADM Mass in the Quasi-Isotropic Gauge

In the quasi-isotropic gauge, the ADM mass can be expressed entirely in terms of
the flux at infinity of the gradient of the conformal factor Ψ. Indeed, thanks to (8.46),
the term D̄ j γ̃i j Eq. (8.33) does not contribute to the integral and we get

MADM = − 1

2π
lim

St →∞

∮

St

si D̄iΨ
√

q d2 y (quasi-isotropic gauge). (8.48)
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Fig. 8.1 Hypersurface Σt
with a hole defining an inner
boundary Ht .

Thanks to the Gauss–Ostrogradsky theorem, we may transform this formula into
a volume integral. More precisely, let us assume that Σt is diffeomorphic to either
R

3 or R
3 minus a ball. In the latter case, Σt has an inner boundary, that we may

call a hole and denote by Ht (cf. Fig. 8.1). We assume that Ht has the topology of
a sphere. Actually this case is relevant for black hole spacetimes when black holes
are treated via the so-called excision technique. The Gauss–Ostrogradsky formula
enables to transform expression (8.48) into

MADM = − 1

2π

∫

Σt

D̃i D̃iΨ
√

γ̃ d3x + MH , (8.49)

where MH is defined by

MH := − 1

2π

∮

Ht

s̃i D̃iΨ
√

q̃ d2 y. (8.50)

In this last equation, q̃ := det(q̃ab), q̃ being the metric induced on Ht by γ̃ , and s̃
is the unit vector with respect to γ̃ (γ̃ (s̃, s̃) = 1) tangent to Σt , normal to Ht and
oriented towards the exterior of the hole (cf. Fig. 8.1). If Σt is diffeomorphic to R

3,

we use formula (8.49) with MH = 0.

Let us now use the Lichnerowicz equation (7.86) to express D̃i D̃iΨ in Eq. (8.49).
We get

MADM =
∫

Σt

[
Ψ 5 E + 1

16π

(
Âi j Âi j Ψ −7 − R̃Ψ − 2

3
K 2Ψ 5

)] √
γ̃ d3x + MH .

(8.51)
For the computation of the ADM mass in a numerical code, this formula may result
in a greater precision that the surface integral at infinity (8.48).

Remark 8.5 On the formula (8.51), we get immediately the Newtonian limit (8.36)
by making Ψ → 1, E → ρ, Âi j → 0, R̃ → 0, K → 0, γ̃ → f and MH = 0.

For the IWM approximation of general relativity considered in Sect. 7.6, the coor-
dinates belong to the quasi-isotropic gauge (since γ̃ = f ), so we may apply (8.51).
Moreover, as a consequence of γ̃ = f , R̃ = 0 and in the IWM approximation,
K = 0. Therefore Eq.(8.51) simplifies to

MADM =
∫

Σt

(
Ψ 5 E + 1

16π
Âi j Âi jΨ −7

)√
γ̃ d3x + MH . (8.52)
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Within the framework of exact general relativity, the above formula is valid for any
maximal slice Σt with a conformally flat metric.

8.6 Komar Mass and Angular Momentum

When the spacetime (M , g) has some symmetries, one may define global quantities
in a coordinate-independent way by means of a general technique introduced by
Komar [18]. It consists in taking flux integrals of the derivative of the Killing vector
associated with the symmetry over closed 2-surfaces surrounding the matter sources.
The quantities thus obtained are conserved in the sense that they do not depend upon
the choice of the integration 2-surface, as long as the latter stays outside the matter.
We discuss here two important cases: the Komar mass resulting from time symmetry
(stationarity) and the Komar angular momentum resulting from axisymmetry.

8.6.1 Komar Mass

Let us assume that the spacetime (M , g) is stationary. This means that the met-
ric tensor g is invariant by Lie transport along the field lines of a timelike vector
field k:

Lk g = 0, (8.53)

where Lk is the Lie derivative along k (cf. Sect. 2.5). The latter is called a
Killing vector. Provided that it is normalized so that k · k = −1 at spatial infin-
ity, it is then unique. Given a 3+1 foliation (Σt )t∈R of M , and a closed 2-surface
St in Σt , with the topology of a sphere, the Komar mass is defined by

MK := − 1

8π

∮

St

∇μkv dSμv , (8.54)

with the 2-surface element

dSμv = (sμnv − nμsv)
√

q d2 y, (8.55)

where n is the unit timelike normal to Σt , s is the unit normal to St within Σt

oriented towards the exterior of St , (ya) = (y1, y2) are coordinates spanning St ,

and q := det(qab), the qab’s being the components with respect to (ya) of the metric
q induced by γ (or equivalently by g) on St . Actually the Komar mass can be defined
over any closed 2-surface, but in the present context it is quite natural to consider
only 2-surfaces lying in the hypersurfaces Σt of the 3+1 foliation.

A priori the quantity MK as defined by (8.54) should depend on the choice of the
2-surface St . However, thanks to the fact that k is a Killing vector, this is not the
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Fig. 8.2 Integration surface St for the computation of Komar mass. St is the external boundary of
a part Vt of Σt which contains all the matter sources (T �= 0). Vt has possibly some inner boundary,
in the form of one (or more) hole Ht

case, as long as St is located outside any matter content of spacetime. In order to
show this, let us transform the surface integral (8.54) into a volume integral. As in
Sect. 8.5.4, we suppose that Σt is diffeomorphic to either R

3 or R
3 minus one hole,

the results being easily generalized to an arbitrary number of holes (see Fig. 8.2).
The hole, the surface of which is denoted by Ht as in Sect. 8.5.3, must be totally
enclosed within the surface St . Let us then denote by Vt the part of Σt delimited by
Ht and St .

The starting point is to notice that since k is a Killing vector the ∇μkv’s in the
integrand of Eq. (8.54) are the components of an antisymmetric tensor. Indeed, k
obeys Killing equation4:

∇αkβ + ∇βkα = 0 . (8.56)

Now for any antisymmetric tensor A of type (2, 0), the following identity holds:

2
∫

Vt

∇v Aμv dVμ =
∮

St

Aμv dSμv +
∮

Ht

Aμv dSH
μv , (8.57)

with dVμ is the volume element on Σt :

dVμ = −nμ
√

γ d3x (8.58)

and dSH
μv is the surface element on Ht and is given by a formula similar to

Eq. (8.55), using the same notation for the coordinates and the induced metric on
Ht :

dSH
μv = (nμsv − sμnv)

√
q d2 y. (8.59)

The change of sign with respect to Eq. (8.55) arises because we choose the unit
vector s normal to Ht to be oriented towards the interior of Vt (cf. Fig. 8.2). Let
us establish (8.57). Expressing the divergence of the antisymmetric tensor A via

4 The Killing equation follows immediately from Eq. (8.53) with the Lie derivative expressed via
Eq. (2.92), along with ∇g = 0.
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the identity (2.66), and using the expression (8.58) of dVμ with the components
nμ = (−N , 0, 0, 0) given by Eq.(5.37), we get

∫

Vt

∇v Aμv dVμ = −
∫

Vt

∂

∂xv

(√−g Aμv) nμ

√
γ√−g

d3x =
∫

Vt

∂

∂xv

(√
γ N A0v

)
d3x,

where we have also invoked the relation (5.55) between the determinants of g and
γ :

√−g = N
√

γ . Now, since Aαβ is antisymmetric, A00 = 0 and we can write
∂/∂xv

(√
γ N A0v

) = ∂/∂xi
(√

γ V i
)

where V i = N A0i are the components of the
vector V ∈ T (Σt ) defined by V := −−→

γ (n · A). The above integral then becomes
∫

Vt

∇v Aμv dVμ =
∫

Vt

1√
γ

∂

∂xi

(√
γ V i

) √
γ d3x =

∫

Vt

Di V i√γ d3x .

We can now use the Gauss–Ostrogradsky theorem to get
∫

Vt

∇v Aμv dVμ =
∮

∂Vt

V i si
√

q d2 y.

Noticing that ∂Vt = Ht ∪ St (cf. Fig. 8.2) and (from the antisymmetry of Aμv)

V i si = V vsv = −nμ Aμvsv = 1

2
Aμv(sμnv − nμsv),

we get the identity (8.57).

Remark 8.6 Equation (8.57) can also be derived by applying Stokes’ theorem to
the 2-form 4εαβμv Aμv, where 4εαβμv is the Levi–Civita tensor associated with the
spacetime metric g (cf. Sect. 11.2.10) (see e.g. derivation of Eq. (11.2.10) in Wald’s
book [7]).

Applying formula (8.57) to Aμv = ∇μkv we get, in view of the definition (8.54),

MK = − 1

4π

∫

Vt

∇v∇μkv dVμ + MH
K , (8.60)

where

MH
K := 1

8π

∮

Ht

∇μkv dSH
μv (8.61)

will be called the Komar mass of the hole. Now, from the contracted Ricci identity
(2.68),

∇v∇μkv − ∇μ ∇vkv
︸︷︷︸

0

= 4Rμvkv,

where the “= 0” is a consequence of Killing’s equation (8.56). Equation (8.60)
becomes then
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MK = − 1

4π

∫

Vt

4Rμ
vkv dVμ + MH

K = 1

4π

∫

Vt

4Rμvkvnμ√
γ d3x + MH

K .

At this point, we can use Einstein equation in the form (5.2) to express the Ricci
tensor 4R in terms of the matter stress-energy tensor T . We obtain

MK = 2
∫

Vt

(
Tμv − 1

2
T gμv

)
nμkv√γ d3x + MH

K . (8.62)

The support of the integral over Vt is reduced to the location of matter, i.e. the domain
where T �= 0. It is then clear on formula (8.62) that MK is independent of the choice
of the 2-surface St , provided all the matter is contained in St . In particular, we may
extend the integration to all Σt and write formula (8.62) as

MK = 2
∫

Σt

[
T (n, k) − 1

2
T n · k

] √
γ d3x + MH

K . (8.63)

The Komar mass then appears as a global quantity defined for stationary spacetimes.

Remark 8.7 One may have MH
K < 0, with MK > 0, provided that the matter

integral in Eq. (8.63) compensates for the negative value of MH
K . Such spacetimes

exist, as demonstrated by Ansorg and Petroff [19]: these authors have numerically
constructed spacetimes containing a black hole with MH

K < 0 surrounded by a ring
of matter (incompressible perfect fluid) such that the total Komar mass is positive.

8.6.2 3+1 Expression of the Komar Mass and Link
with the ADM Mass

In stationary spacetimes, it is natural to use coordinates adapted to the symmetry, i.e.
coordinates (t, xi ) such that

∂ t = k . (8.64)

Then Eq. (5.59) results in the following 3+1 decomposition of the Killing vector in
terms of the lapse and shift:

k = N n + β. (8.65)

Let us insert this relation into the integrand in the definition (8.54):
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∇μkv dSμv = ∇μkv(s
μnv − nμsv)

√
q d2 y

= 2∇μkvsμnv√q d2 y

= 2
(∇μNnv + N∇μnv + ∇μβv

)
sμnv√q d2 y

= 2
(−sμ∇μN + 0 − sμβv∇μnv) √

q d2 y

= −2
(

si Di N − Ki j s
iβ j

) √
q d2 y, (8.66)

where we have used Killing’s equation (8.56) to get the second line, the orthogonality
of n and β to get the fourth one and expression (4.26) for ∇μnv to get the last line.
Inserting Eq. (8.66) into Eq. (8.54) yields the 3+1 expression of the Komar mass:

MK = 1

4π

∮

St

(
si Di N − Ki j s

iβ j
) √

q d2 y . (8.67)

Example 8.5. A simple prototype of a stationary spacetime is of course the
Schwarzschild spacetime. Let us compute its Komar mass by means of the
above formula and the foliation (Σt )t∈R defined by the standard Schwarzschild
coordinates (8.12). For this foliation, Ki j = 0, which reduces Eq. (8.67) to
the flux of the lapse’s gradient across St . Taking advantage of the spherical
symmetry, we choose St to be a surface r = const. Then ya = (θ, ϕ). The
unit normal s is read from the line element (8.12); its components with respect
to the Schwarzschild coordinates (r, θ, ϕ) are

si =
((

1 − 2m

r

)1/2

, 0, 0

)

. (8.68)

N and
√

q are also read on the line element (8.12): N = (1 − 2m/r)1/2 and√
q = r2 sin θ, so that Eq. (8.67) results in

MK = 1

4π

∮

r=const

(
1 − 2m

r

)1/2
∂

∂r

[(
1 − 2m

r

)1/2
]

r2 sin θ dθ dϕ.

All the terms containing r simplify and we get

MK = m. (8.69)

On this particular example, we have verified that the value of MK does not
depend upon the choice of St (i.e. upon the value of r).

Let us now turn to the volume expression (8.63) of the Komar mass. By using the
3+1 decomposition (5.14) and (5.15) of respectively T and T, we get
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T (n, k) − 1

2
T n · k = −〈 p, k〉 − E〈n, k〉 − 1

2
(S − E)n · k

= −〈 p,β〉 + E N + 1

2
(S − E)N = 1

2
N (E + S) − 〈 p,β〉.

Hence formula (8.63) becomes

MK =
∫

Σt

[
N (E + S) − 2〈 p,β〉] √

γ d3x + MH
K , (8.70)

with the Komar mass of the hole given by an expression identical to Eq. (8.67),
except for St replaced by Ht [notice the double change of sign: first in Eq. (8.61)
and secondly in Eq. (8.59), so that at the end we get an expression identical to
Eq. (8.67)]:

MH
K = 1

4π

∮

Ht

(
si Di N − Ki j s

iβ j
) √

q d2 y . (8.71)

It is easy to take the Newtonian limit Eq. (8.70), by making N → 1, E → ρ,

S � E [Eq. (6.22)], β → 0, γ → f and MH
K = 0. We get

MK =
∫

Σt

ρ
√

f d3x . (8.72)

Hence at the Newtonian limit, the Komar mass reduces to the standard total mass.
This, along with the result (8.69) for Schwarzschild spacetime, justifies the name
Komar mass.

A natural question which arises then is how does the Komar mass relate to the
ADM mass of Σt ? The answer is not obvious if one compares the defining formulæ
(8.9) and (8.54). It is even not obvious if one compares the 3+1 expressions (8.33)
and (8.67): Eq. (8.33) involves the flux of the gradient of the conformal factor Ψ of
the 3-metric, whereas Eq. (8.67) involves the flux of the gradient of the lapse function
N. Moreover, in Eq. (8.33) the integral must be evaluated at spatial infinity, whereas
in Eq. (8.67) it can be evaluated at any finite distance (outside the matter sources).
Besides, in the quasi-isotropic gauge, we have obtained a volume expression of the
ADM mass, Eq. (8.51), that we may compare to the volume expression (8.70) of the
Komar mass. Even when there is no hole, the two expressions are pretty different.
In particular, the Komar mass integral has a compact support (the matter domain),
whereas the ADM mass integral has not.

The answer to the above question has been obtained in 1978 by Beig [20], as well
as by Ashtekar and Magnon-Ashtekar the year after [21]: for any foliation (Σt )t∈R

whose unit normal vector n coincides with the timelike Killing vector k at spatial
infinity [i.e. N → 1 and β → 0 in Eq. (8.65)],

MK = MADM . (8.73)
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Remark 8.8 In expression (8.67) of MK, there is no longer any mention of the
timelike Killing vector k. Therefore (8.67) is sometimes used to define the Komar
mass in non-stationary spacetimes. The integral must then be performed at spatial
infinity, otherwise it would depend on the choice of the 2-surface St .

8.6.3 Komar Angular Momentum

If the spacetime (M , g) is axisymmetric, its Komar angular momentum is defined
by a surface integral similar to that of the Komar mass, Eq. (8.54), but with the Killing
vector k replaced by the Killing vector φ associated with the axisymmetry:

JK := 1

16π

∮

St

∇μφv dSμv . (8.74)

Notice a factor −2 of difference with respect to formula (8.54) (the so-called Komar’s
anomalous factor [22]).

For the same reason as for MK, JK is actually independent of the surface St as
long as the latter is outside all the possible matter sources and JK can be expressed
by a volume integral over the matter by a formula similar to (8.63) (except for the
factor −2):

JK = −
∫

Σt

[
T (n,φ) − 1

2
T n · φ

]√
γ d3x + JH

K , (8.75)

with

JH
K := − 1

16π

∮

Ht

∇μφv dSH
μv . (8.76)

Let us now establish the 3+1 expression of the Komar angular momentum. It is
natural to choose a foliation adapted to the axisymmetry in the sense that the Killing
vector φ is tangent to the hypersurfaces Σt . Then n · φ = 0 and the integrand in the
definition (8.74) is

∇μφv dSμv = ∇μφv(s
μnv − nμsv)

√
q d2 y = 2∇μφvsμnv√q d2 y

= −2sμφv∇μnv√q d2 y = 2Ki j s
iφ j√q d2 y.

Accordingly Eq. (8.74) becomes

JK = 1

8π

∮

St

Ki j s
iφ j√q d2 y . (8.77)
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Remark 8.9 Contrary to the 3+1 expression of the Komar mass which turned out to
be very different from the expression of the ADM mass, the 3+1 expression of the
Komar angular momentum as given by Eq. (8.77) is very similar to the expression
of the angular momentum deduced from the Hamiltonian formalism, i.e. Eq. (8.45).
The only differences are that it is no longer necessary to take the limit St → ∞
and that there is no trace term Kγi j siφ j in Eq. (8.77). Moreover, if one evalu-
ates the Hamiltonian expression in the asymptotically maximal gauge (8.47) then
K = O(r−3) and thanks to the asymptotic orthogonality of s and φ, γi j siφ j = O(1),
so that Kγi j siφ j does not contribute to the integral and expressions (8.77) and (8.45)
are then identical.

Example 8.6. A trivial example is provided by Schwarzschild spacetime,
which among other things is axisymmetric. For the 3+1 foliation associated
with the Schwarzschild coordinates (8.12), the extrinsic curvature tensor K
vanishes identically, so that Eq. (8.77) yields immediately JK = 0. For other
foliations, like that associated with Eddington–Finkelstein coordinates, K is no
longer zero but is such that Ki j siφ j = 0, yielding again JK = 0 (as it should be
since the Komar angular momentum is independent of the foliation). Explicitly
for Eddington–Finkelstein coordinates,

Ki j s
i =

(

−2m

r2

1 + m
r

1 + 2m
r

, 0, 0

)

, (8.78)

(see e.g. Eq. (D.25) in Ref. [23]) and φ j = (0, 0, 1), so that obviously
Ki j siφ j = 0.

Example 8.7 The most natural non trivial example is certainly that of Kerr
spacetime. Let us use the 3+1 foliation associated with the standard Boyer–
Lindquist coordinates (t, r, θ, ϕ) and evaluate the integral (8.77) by choosing
for St a sphere r = const. Then ya = (θ, ϕ). The Boyer–Lindquist compo-
nents of φ are φi = (0, 0, 1) and those of s are si = (sr , 0, 0) since γi j is
diagonal is these coordinates. The formula (8.77) then reduces to

JK = 1

8π

∮

r=const
Krϕsr√q dθ dϕ.

The extrinsic curvature component Krϕ can be evaluated via formula (5.68),
which reduces to 2N Ki j = Lβγi j since ∂γi j/∂t = 0. From the Boyer–
Lindquist line element (see e.g. Eq. (5.29) in Ref. [24]), we read the components
of the shift:
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(βr , βθ , βϕ) =
(

0, 0,− 2amr

(r2 + a2)(r2 + a2 cos2 θ) + 2a2mr sin2 θ

)
,

(8.79)
where m and a are the two parameters of the Kerr solution. Then, using
Eq. (2.90),

Krϕ = 1

2N
Lβγrϕ = 1

2N

(
βϕ ∂γrϕ

∂ϕ
︸ ︷︷ ︸

0

+γϕϕ

∂βϕ

∂r
+ γrϕ

∂βϕ

∂ϕ
︸︷︷︸

0

)
= 1

2N
γϕϕ

∂βϕ

∂r
.

Hence
JK = 1

16π

∮

r=const

sr

N
γϕϕ

∂βϕ

∂r

√
q dθ dϕ.

The values of sr , N, γϕϕ and
√

q can all be read on the Boyer–Lindquist line
element. However this is a bit tedious. To simplify things, let us evaluate JK
only in the limit r → ∞. Then sr ∼ 1, N ∼ 1, γϕϕ ∼ r2 sin2 θ ,

√
q ∼ r2 sin θ

and, from Eq. (8.79), βϕ ∼ −2am/r3, so that

JK = 1

16π

∮

r=const
r2 sin2 θ

6am

r4 r2 sin θ dθ dϕ = 3am

8π
×2π×

∫ π

0
sin3 θ dθ.

Hence, as expected,
JK = am. (8.80)

Let us now find the 3+1 expression of the volume version (8.75) of the Komar
angular momentum. We have n·φ = 0 and, from the 3+1 decomposition (5.14)
of T :

T (n,φ) = −〈 p,φ〉.
Hence formula (8.75) becomes

JK =
∫

Σt

〈 p,φ〉√γ d3x + JH
K , (8.81)

with

JH
K = 1

8π

∮

Ht

Ki j s
iφ j√q d2 y . (8.82)
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Example 8.8 Let us consider a perfect fluid. Then p = (E + P)U [Eq. (6.57)],
so that

JK =
∫

Σt

(E + P)U · φ
√

γ d3x + JH
K . (8.83)

Taking φ = −y∂ x + x∂ y (symmetry axis = z-axis), the Newtonian limit of
this expression is then

JK =
∫

Σt

ρ(−yU x + xU y) dx dy dz, (8.84)

i.e. we recognize the standard expression for the angular momentum around
the z-axis.
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Chapter 9
The Initial Data Problem

Abstract The problem of solving the constraint equations to get valid initial data
for the time evolution is discussed. We focus on two methods based on the conformal
decomposition introduced in Chap. 7: the conformal transverse-traceless method and
the conformal thin sandwich method. Both methods are illustrated by initial data in
Schwarzschild spacetime. Finally, we give a survey of the construction of initial for
binary compact objects, which are of major interest in numerical relativity.

9.1 Introduction

9.1.1 The Initial Data Problem

We have seen in Chap. 5 that thanks to the 3+1 decomposition, the resolution of
Einstein equation amounts to solving a Cauchy problem, namely to evolve “forward
in time” some initial data. This is however a Cauchy problem with constraints. This
makes the set up of initial data a non trivial task, because these data must obey the
constraints. Actually one may distinguish two problems:

• The mathematical problem: given some hypersurface Σ0, find a Riemannian metric
γ , a symmetric bilinear form K and some matter distribution (E, p) on Σ0 such
that the Hamiltonian constraint (5.70) and the momentum constraint (5.71) are
satisfied:

R + K2 − KijK
ij = 16πE (9.1)

DjK
i
j − DiK = 8πpi . (9.2)

In addition, the matter distribution (E, p) may have some constraints from its own.
We shall not discuss them here.

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 187
DOI: 10.1007/978-3-642-24525-1_9, © Springer-Verlag Berlin Heidelberg 2012
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• The astrophysical problem: make sure that the solution to the constraint equations
has something to do with the physical system that one wish to study.

Notice that Eqs. (9.1)–(9.2) involve a single hypersurface Σ0, not a foliation (Σt)t∈R.
In particular, neither the lapse function nor the shift vector appear in these equa-
tions. Facing them, a naive way to proceed would be to choose freely the met-
ric γ , thereby fixing the connection D and the scalar curvature R, and to solve
Eqs. (9.1)–(9.2) for K. Indeed, for fixed γ , E, and p, Eqs. (9.1)–(9.2) form a quasi-
linear system of first order for the components Kij.However, as discussed by Choquet-
Bruhat [1], this approach is not satisfactory because we have only four equations for
six unknowns Kij and there is no natural prescription for choosing arbitrarily two
among the six components Kij.

Lichnerowicz [2] has shown that a much more satisfactory split of the ini-
tial data (γ , K) between freely chosable parts and parts obtained by solving Eqs.
(9.1)–(9.2) is provided by the conformal decomposition introduced in Chap. 7.
Lichnerowicz method has been extended by Choquet-Bruhat [1, 3], by York and
Ó Murchadha [4–7] and by York and Pfeiffer [8, 9]. Actually, conformal decomposi-
tions are by far the most employed techniques to get initial data for the 3+1 Cauchy
problem. Alternative methods exist, such as the quasi-spherical ansatz introduced
by Bartnik in 1993 [10] or a procedure developed by Corvino [11] and Isenberg et
al. [12] for gluing together known solutions of the constraints, thereby producing
new ones (see also [13]). Here we shall limit ourselves to the conformal methods.
Standard reviews on this subject are the articles by York [7] and Choquet-Bruhat
and York [14]. More recent reviews are the articles by Cook [15], Pfeiffer [16] and
Bartnik and Isenberg [17], Gourgoulhon [18] and Chruściel et al. [13], as well as the
devoted chapters of the textbooks [19–21].

9.1.2 Conformal Decomposition of the Constraints

The conformal form of the constraint equations has been derived in Chap. 7. We have
introduced there the conformal metric γ̃ and the conformal factor Ψ such that the
metric γ induced by the spacetime metric on some hypersurface Σ0 is [cf. Eq. (7.2)]

γij = Ψ 4γ̃ij, (9.3)

and have decomposed the traceless part Aij of the extrinsic curvature Kij according
to [cf. Eq. (7.67)]

Aij = Ψ −10Âij. (9.4)

We consider here the decomposition involving Âij [α = −10 in Eq. (7.51)] and not
the alternative one, which uses Ãij (α = −4), because we have seen in Sect. 7.4.2
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that the former is well adapted to the momentum constraint. Using the decompo-
sitions (9.3) and (9.4), we have rewritten the Hamiltonian constraint (9.1) and the
momentum constraint (9.2) as respectively the Lichnerowicz equation [Eq. (7.94)]
and an equation involving the divergence of Âij with respect to the conformal metric
[Eq. (7.95)] :

D̃iD̃
iΨ − 1

8
R̃Ψ + 1

8
ÂijÂ

ijΨ −7 + 2πẼΨ −3 − 1

12
K2Ψ 5 = 0 , (9.5)

D̃jÂ
ij − 2

3
Ψ 6D̃iK = 8π p̃i , (9.6)

where the following rescaled matter quantities have been introduced:

Ẽ := Ψ 8E (9.7)

and

p̃i := Ψ 10pi. (9.8)

The definition of p̃i is clearly motivated by Eq. (7.95). On the contrary the power 8 in
the definition of Ẽ is not the only possible choice. As we shall see in Sect. 9.2.4, it is
chosen (i) to guarantee a negative power of Ψ in the Ẽ term in Eq. (9.5), resulting in
some uniqueness property of the solution and (ii) to allow for an easy implementation
of the dominant energy condition.

9.2 Conformal Transverse-Traceless Method

9.2.1 Longitudinal / Transverse Decomposition of Âij

In order to solve the system (9.5)–(9.6), York [5, 7, 22] has decomposed Âij into a
longitudinal part and a transverse one, by setting

Âij = (L̃X)ij + Âij
TT , (9.9)

where Âij
TT is both traceless and transverse (i.e. divergence-free) with respect to the

metric γ̃ :

γ̃ijÂ
ij
TT = 0 and D̃jÂ

ij
TT = 0, (9.10)

and (L̃X)ij is the conformal Killing operator associated with the metric γ̃ and acting
on the vector field X:
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(L̃X)ij := D̃iXj + D̃jXi − 2

3
D̃kXk γ̃ ij . (9.11)

The properties of this linear differential operator are detailed in Appendix A. Let us
retain here that (L̃X)ij is by construction traceless:

γ̃ij(L̃X)ij = 0 (9.12)

(it must be so because in Eq. (9.9) both Âij and Âij
TT are traceless) and the kernel of

L̃ is made of the conformal Killing vectors of the metric γ̃ , i.e. the generators of
the conformal isometries (cf. Sect. A.1.3). The symmetric tensor (L̃X)ij is called the
longitudinal part of Âij, whereas Âij

TT is called the transverse part.
Given Âij, the vector X is determined by taking the divergence of Eq. (9.9): taking

into account property (9.10), we get

D̃j(L̃X)ij = D̃jÂ
ij. (9.13)

The second order operator D̃j(L̃X)ij acting on the vector X is the conformal vector
Laplacian Δ̃L:

Δ̃LXi := D̃j(L̃X)ij = D̃jD̃
jXi + 1

3
D̃iD̃jX

j + R̃i
jX

j , (9.14)

where the second equality follows from Eq. (A.7). The basic properties of Δ̃L are
investigated in Appendix A, where it is shown that this operator is elliptic and that
its kernel is, in practice, reduced to the conformal Killing vectors of γ̃ , if any. We
rewrite Eq. (9.13) as

Δ̃LXi = D̃jÂ
ij. (9.15)

The existence and uniqueness of the longitudinal/transverse decomposition (9.9)
depend on the existence and uniqueness of solutions X to Eq. (9.15). We shall consider
two cases:

• Σ0 is a closed manifold, i.e. is compact without boundary;
• (Σ0, γ ) is an asymptotically flat manifold, in the sense made precise in Sect. 8.2.

In the first case, it is shown in Appendix A that solutions to Eq. (9.15) exist provided
that the source D̃jÂij is orthogonal to all conformal Killing vectors of γ̃ , in the sense
that [cf. Eq. (A.20)]:

∀C ∈ kerL̃,

∫
Σ0

γ̃ijC
iD̃kÂjk

√
γ̃ d3x = 0. (9.16)

But this is easy to check: using the fact that the source is a pure divergence and that
Σ0 is closed, we may integrate by parts and get, for any vector field C,
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∫
Σ0

γ̃ijC
iD̃kÂjk

√
γ̃ d3x = −1

2

∫
Σ0

γ̃ijγ̃kl(L̃C)ikÂjl
√

γ̃ d3x.

Then, obviously, when C is a conformal Killing vector, the right-hand side of the
above equation vanishes. So the condition (9.16) is fulfilled and there exists a solution
to Eq. (9.15); this solution is unique up to the addition of a conformal Killing vector.
However, given a solution X, for any conformal Killing vector C, the solution X +C
yields the same value of L̃X, since C is by definition in the kernel of L̃. Therefore
we conclude that the decomposition (9.9) of Âij is unique, although the vector X may
not be if (Σ0, γ̃ ) admits some conformal isometries.

In the case of an asymptotically flat manifold, the existence and uniqueness is
guaranteed by the Cantor theorem mentioned in Sect. A.2.4. We shall then require
the decay condition

∂2γ̃ij

∂xk∂xl
= O(r−3) (9.17)

in addition to the asymptotic flatness conditions (8.27) introduced in Chap. 8. This
guarantees that [cf. Eq. (A.23)]

R̃ij = O(r−3). (9.18)

In addition, we notice that Âij obeys the decay condition Âij = O(r−2) which is
inherited from the asymptotic flatness condition (8.2a). Then D̃jÂij = O(r−3) so that
condition (A.21) is satisfied. Then all conditions are fulfilled to conclude that Eq.
(9.15) admits a unique solution X which vanishes at infinity.

To summarize, for all considered cases (asymptotic flatness with the additional
condition (9.17) and closed manifold), any symmetric and traceless tensor Âij (decay-
ing as O(r−2) in the asymptotically flat case) admits a unique longitudinal/transverse
decomposition of the form (9.9).

9.2.2 Conformal Transverse-Traceless Form of the Constraints

Inserting the longitudinal/transverse decomposition (9.9) into the constraint equa-
tions (9.5) and (9.6) and making use of Eq. (9.15) leads to the system

D̃iD̃
iΨ − 1

8
R̃Ψ + 1

8

[
(L̃X)ij + ÂTT

ij

] [
(L̃X)ij + Âij

TT

]
Ψ −7

+ 2π ẼΨ −3 − 1

12
K2Ψ 5 = 0,

(9.19)

Δ̃LXi − 2

3
Ψ 6D̃iK = 8π p̃i , (9.20)
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where

(L̃X)ij := γ̃ik γ̃jl(L̃X)kl (9.21)

ÂTT
ij := γ̃ik γ̃jlÂ

kl
TT. (9.22)

With the constraint equations written as (9.19) (the Lichnerowicz equation) and
(9.20), we see clearly which part of the initial data on Σ0 can be freely chosen and
which part is “constrained”:

• free data:

– conformal metric γ̃ ;
– symmetric traceless and transverse tensor Âij

TT (traceless and transverse are

meant with respect to γ̃ : γ̃ijÂ
ij
TT = 0 and D̃jÂ

ij
TT = 0);

– scalar field K;
– conformal matter variables: (Ẽ, p̃i);

• constrained data (or “determined data”):

– conformal factor Ψ, obeying the non-linear elliptic equation (9.19)
(Lichnerowicz equation)

– vector X, obeying the linear elliptic equation (9.20).

Accordingly the general strategy to get valid initial data for the Cauchy problem is
to choose (γ̃ij, Âij

TT, K, Ẽ, p̃i) on Σ0 and solve the system (9.19)–(9.20) to get Ψ and
Xi. Then one constructs

γij = Ψ 4γ̃ij (9.23)

Kij = Ψ −10
(
(L̃X)ij + Âij

TT

)
+ 1

3
Ψ −4K γ̃ ij (9.24)

E = Ψ −8Ẽ (9.25)

pi = Ψ −10p̃i (9.26)

and obtains a set (γ , K, E, p) which satisfies the constraint equations (9.1)–(9.2).
This method has been proposed by York [7] and is naturally called the conformal
transverse traceless (CTT) method.

9.2.3 Decoupling on Hypersurfaces of Constant Mean Curvature

Equations (9.19) and (9.20) are coupled, but we notice that if, among the free data,
we choose K to be a constant field on Σ0,

K = const, (9.27)
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then they decouple partially : condition (9.27) implies D̃iK = 0, so that the momen-
tum constraint (9.20) becomes independent of Ψ :

Δ̃LXi = 8π p̃i (K = const). (9.28)

The condition (9.27) on the extrinsic curvature of Σ0 defines what is called a
constant mean curvature (CMC ) hypersurface. Indeed let us recall that K is nothing
but minus three times the mean curvature of (Σ0, γ ) embedded in (M , g) [cf. Eq.
(3.21)].

Example 9.1 A maximal hypersurface, having K = 0, is of course a special
case of a CMC hypersurface. Another example is provided by the hyperbolic
slice of Minkowski spacetime considered in Examples 3.4 and 4.1, for which
K = −3/b, with b constant [Eq. (3.48 )].

On a CMC hypersurface, the task of obtaining initial data is greatly simplified: one
has first to solve the linear elliptic equation (9.28) to get X and plug the solution in
Eq. (9.19) to form an equation for Ψ. Equation (9.28) is the conformal vector Poisson
equation studied in Appendix A. It is shown in Sect. A.2.4 that it always solvable
for the two cases of interest mentioned in Sect. 9.2.1: closed or asymptotically flat
manifold. Moreover, the solutions X are such that the value of L̃X is unique.

9.2.4 Existence and Uniqueness of Solutions
to Lichnerowicz Equation

Taking into account the CMC decoupling, the difficult problem is to solve
Lichnerowicz equation (9.19) for Ψ. This equation is elliptic and highly non-linear.1

It has been first studied by Lichnerowicz [2, 23] in the case K = 0 (Σ0 maximal) and
Ẽ = 0 (vacuum). Lichnerowicz has shown that given the value of Ψ at the boundary
of a bounded domain of Σ0 (Dirichlet problem), there exists at most one solution
to Eq. (9.19). Besides, he showed the existence of a solution provided that ÂijÂij is
not too large. These early results have been much improved since then. In particular
Cantor [24] has shown that in the asymptotically flat case, still with K = 0 and
Ẽ = 0, Eq. (9.19) is solvable if and only if the metric γ̃ is conformal to a metric with
vanishing scalar curvature (one says then that γ̃ belongs to the positive Yamabe class)
(see also Ref. [25]). In the case of closed manifolds, the complete analysis of the
CMC case has been achieved by Isenberg [26]. The non-CMC case is more tricky;
see e.g. Refs. [27, 28] for recent progresses in this direction.

For more details and further references, we recommend the review articles by
Choquet–Bruhat and York [14], Bartnik and Isenberg [17] and Chruściel, Galloway

1 Although it is quasi-linear in the technical sense, i.e. linear with respect to the highest-order
derivatives.
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and Pollack [13], as well as Choquet–Bruhat’s textbook [21]. Here we shall simply
repeat the argument of York [8] to justify the rescaling (9.7) of E. This rescaling is
indeed related to the uniqueness of solutions to the Lichnerowicz equation. Consider
a solution Ψ0 to Eq. (9.9) in the case K = 0, to which we restrict ourselves. Another
solution close to Ψ0 can be written Ψ = Ψ0 + ε, with |ε| � Ψ0:

D̃iD̃
i(Ψ0 + ε) − 1

8
R̃(Ψ0 + ε) + 1

8
ÂijÂ

ij(Ψ0 + ε)−7 + 2π Ẽ(Ψ0 + ε)−3 = 0.

Expanding to the first order in ε/Ψ0 leads to the following linear equation for ε:
D̃iD̃

iε − αε = 0, (9.29)

with

α := 1

8
R̃ + 7

8
ÂijÂ

ijΨ −8
0 + 6π ẼΨ −4

0 . (9.30)

Now, if α ≥ 0, one can show, by means of the maximum principle, that the solution
of (9.29) which vanishes at spatial infinity is necessarily ε = 0 (see Ref. [29] or
Sect. B.1 of Ref. [30]). We therefore conclude that the solution Ψ0 to Eq. (9.19) is
unique (at least locally) in this case. On the contrary, if α < 0, non trivial oscillatory
solutions of Eq. (9.29) exist, making the solution Ψ0 not unique. The key point is that
the scaling (9.7) of E yields the term +6π ẼΨ −4

0 in Eq. (9.30), which contributes
to make α positive. If we had not rescaled longitudinal part E, i.e. had considered
the original Hamiltonian constraint equation (7.94), the contribution to α would
have been instead −10πEΨ 4

0 , i.e. would have been negative. Actually, any rescaling
Ẽ = Ψ sE with s > 5 would have work to make α positive. The choice s = 8 in Eq.
(9.7) is motivated by the fact that if the conformal data (Ẽ, p̃i) obey the “conformal”
dominant energy condition (cf. Sect. 8.3.4)

Ẽ ≥
√

γ̃ij p̃ip̃j, (9.31)

then, via the scaling (9.8) of pi, the reconstructed physical data (E, pi) will automat-
ically obey the dominant energy condition as stated by Eq. (8.38):

E ≥
√

γijpipj. (9.32)

9.2.5 Conformally Flat and Momentarily Static Initial Data

In this section we search for asymptotically flat initial data (Σ0, γ , K). Let us then
consider the simplest case one may think of, namely choose the freely specifiable
data (γ̃ij, Âij

TT, K, Ẽ, p̃i) to be a flat metric:

γ̃ij = fij, (9.33)
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a vanishing transverse-traceless part of the extrinsic curvature:

Âij
TT = 0, (9.34)

a vanishing mean curvature (maximal hypersurface)

K = 0, (9.35)and a vacuum spacetime:

Ẽ = 0, p̃i = 0. (9.36)

Then D̃i = D̄i, R̃ = 0, L̃ = L [cf. Eq. (7.107)] and the constraint equations (9.19)–
(9.20) reduce to

ΔΨ + 1

8
(LX)ij(LX)ijΨ −7 = 0 (9.37)

ΔLXi = 0, (9.38)

where Δ and ΔL are respectively the scalar Laplacian and the conformal vector
Laplacian associated with the flat metric f :

Δ := D̄iD̄
i (9.39)

and

ΔLXi := D̄jD̄
jXi + 1

3
D̄iD̄jX

j. (9.40)

Equations (9.37)–(9.38) must be solved with the boundary conditions

Ψ = 1 when r → ∞ (9.41)

X = 0 when r → ∞, (9.42)

which follow from the asymptotic flatness requirement. The solution depends on the
topology of Σ0, since the latter may introduce some inner boundary conditions in
addition to (9.41)–(9.42).

Let us start with the simplest case: Σ0 = R
3. Then the solution of Eq. (9.38)

subject to the boundary condition (9.42) is

X = 0 (9.43)

and there is no other solution (cf. Sect. A.2.4). Then obviously (LX)ij = 0, so that
Eq. (9.37) reduces to Laplace equation for Ψ :

ΔΨ = 0. (9.44)
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With the boundary condition (9.41), there is a unique regular solution on R
3:

Ψ = 1. (9.45)

The initial data reconstructed from Eqs. (9.23)–(9.24) is then

γ = f (9.46)

K = 0. (9.47)

These data correspond to a spacelike hyperplane of Minkowski spacetime. Geometri-
cally the condition K = 0 is that of a totally geodesic hypersurface (cf. Sect. 3.4.3).
Physical data with K = 0 are said to be momentarily static or time symmetric.
Indeed, from Eq. (4.26),

Lmg = −2NK − 2∇nNn ⊗ n.

So if K = 0 and if moreover one chooses a geodesic slicing around Σ0 (cf. Sect.
5.4.2), which yields N = 1 and ∇nN = 0, then

Lmg = 0. (9.48)

This means that, locally (i.e. on Σ0), the normal evolution vector m is a space-
time Killing vector. This vector being timelike, the configuration is then stationary.
Moreover, the Killing vector m being orthogonal to some hypersurface (i.e. Σ0), the
stationary configuration is called static. Of course, this staticity properties holds a
priori only on Σ0 since there is no guarantee that the time development of Cauchy
data with K = 0 at t = 0 maintains K = 0 at t > 0. Hence the qualifier ‘momentarily’
in the expression ‘momentarily static’ for data with K = 0.

To get something less trivial than a hyperplane in Minkowski spacetime, let us
consider a slightly more complicated topology for Σ0, namely R

3 minus a ball (cf.
Fig. 9.1). The sphere S delimiting the ball is then the inner boundary of Σ0 and we
must provide boundary conditions for Ψ and X on S to solve Eqs. (9.37)–(9.38).
For simplicity, let us choose

X|S = 0. (9.49)

Altogether with the outer boundary condition (9.42), this leads to X being identically
zero as the unique solution of Eq. (9.38). So, again, the Hamiltonian constraint
reduces to Laplace equation

ΔΨ = 0. (9.50)

If we choose the boundary condition Ψ |S = 1, then the unique solution is Ψ = 1
and we are back to the previous example (slice of Minkowski spacetime). In order
to have something non trivial, i.e. to ensure that the metric γ will not be flat, let us
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Fig. 9.1 Hypersurface Σ0 as R
3 minus a ball, displayed via an embedding diagram based on the

metric γ̃ , which coincides with the Euclidean metric on R
3. Hence Σ0 appears to be flat. The unit

normal of the inner boundary S with respect to the metric γ̃ is s̃. Notice that D̃ · s̃ > 0

Fig. 9.2 Same hypersurface Σ0 as in Fig. 9.1 but displayed via an embedding diagram based on
the metric γ instead of γ̃ . The unit normal of the inner boundary S with respect to that metric is
s. Notice that D · s = 0, which means that S is a minimal surface of (Σ0, γ )

demand that γ admits a closed minimal surface, that we will choose to be S . This
will necessarily translate as a boundary condition for Ψ since all the information on
the metric is encoded in Ψ (let us recall that from the choice (9.33), γ = Ψ 4f ).S
is a minimal surface of (Σ0, γ ) iff its mean curvature vanishes, or equivalently iff
its unit normal s is divergence-free (cf. Fig. 9.2):

Dis
i
∣∣∣
S

= 0. (9.51)

This is the analog of ∇·n = 0 for maximal hypersurfaces, the change from minimal to
maximal being due to the change of signature, from the Riemannian to the Lorentzian
one. By means of Eq. (7.34), condition (9.51) is equivalent to

D̄i(Ψ
6si)

∣∣∣
S

= 0, (9.52)

where we have used D̃i = D̄i, since γ̃ = f . Let us rewrite this expression in terms
of the unit vector s̃ normal to S with respect to the metric γ̃ (cf. Fig. 9.1); we have

s̃ = Ψ 2s, (9.53)

since γ̃ (s̃, s̃) = Ψ 4γ̃ (s, s) = γ (s, s) = 1. Thus Eq. (9.52) becomes
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D̄i(Ψ
4s̃i)

∣∣∣
S

= 1√
f

∂

∂xi

(√
f Ψ 4s̃i

)∣∣∣∣∣
S

= 0, (9.54)

where use has been made of the divergence formula (2.54). Let us introduce on
Σ0 a coordinate system of spherical type, (xi) = (r, θ, ϕ), such that (i) fij =
diag(1, r2, r2 sin2 θ) and (ii) S is the sphere r = a, where a is some positive
constant. Since in these coordinates

√
f = r2 sin θ and s̃i = (1, 0, 0), the minimal

surface condition (9.54) is written as

1

r2

∂

∂r

(
Ψ 4r2

)∣∣∣∣
r=a

= 0,

i.e.
(

∂Ψ

∂r
+ Ψ

2r

)∣∣∣∣
r=a

= 0 (9.55)

This is a boundary condition of mixed Newmann/Dirichlet type for Ψ. The unique
solution of the Laplace equation (9.50) which satisfies boundary conditions (9.41)
and (9.55) is

Ψ = 1 + a

r
. (9.56)

The parameter a is then easily related to the ADM mass m of the hypersurface Σ0.

Indeed using formula (8.48), m is evaluated as

m = − 1

2π
lim

r→∞

∮
r=const

∂Ψ

∂r
r2 sin θ dθ dϕ = − 1

2π
lim

r→∞ 4πr2 ∂

∂r

(
1 + a

r

)
= 2a.

(9.57)
Hence a = m/2 and we may write

Ψ = 1 + m

2r
. (9.58)

Therefore, in terms of the coordinates (r, θ, ϕ), the obtained initial data (γ , K) are

γij =
(

1 + m

2r

)4
diag(1, r2, r2 sin θ) (9.59)

Kij = 0. (9.60)

So, as above, the initial data are momentarily static. Actually, we recognize on (9.59)–
(9.60) a slice t = const of Schwarzschild spacetime in isotropic coordinates [compare
with Eq. (7.23)].

The isotropic coordinates (r, θ, ϕ) covering the manifold Σ0 are such that the
range of r is [m/2,+∞). But thanks to the minimal character of the inner boundary
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Fig. 9.3 Extended hypersurface Σ ′
0 obtained by gluing a copy of Σ0 at the minimal surface S and

defining an Einstein–Rosen bridge between two asymptotically flat regions

S , we can extend (Σ0, γ ) to a larger Riemannian manifold (Σ ′
0, γ

′) with γ ′∣∣
Σ0

= γ

and γ ′ smooth at S . This is made possible by gluing a copy of Σ0 at S (cf. Fig.
9.3). The topology of Σ ′

0 is S
2 ×R and the range of r in Σ ′

0 is (0,+∞). The extended
metric γ ′ keeps exactly the same form as (9.59):

γ ′
ij dxi dxj =

(
1 + m

2r

)4 (
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
.

By the change of variable

r 
→ r′ = m2

4r
(9.61)

it is easily shown that the region r → 0 does not correspond to some “center” but
is actually a second asymptotically flat region (the lower one in Fig. 9.3). More-
over the transformation (9.61), with θ and ϕ kept fixed, is an isometry of γ ′.
It maps a point p of Σ0 to the point located at the vertical of p in Fig. 9.3. The
minimal sphere S is invariant under this isometry. The region around S is called
an Einstein–Rosen bridge. (Σ ′

0, γ
′) is still a slice of Schwarzschild spacetime. It

connects two asymptotically flat regions without entering below the event horizon,
as shown in the Kruskal–Szekeres diagram of Fig. 9.4.

Remark 9.1 Kruskal–Szekeres diagrams are representations of the Schwarzschild
spacetime based on the Kruskal–Szekeres coordinates, which have the nice features
(i) to cover the entire Schwarzschild manifold, whose topology is R

2 × S
2 and (ii)

to be adapted to the null cones of the spacetime metric g, so that they are depicted
as ±45◦ lines in Kruskal–Szekeres diagrams, as in Minkowski spacetime diagrams.
We shall not recall here the construction of Kruskal–Szekeres coordinates and refer
the reader to the textbooks [31–34]. Kruskal–Szekeres diagrams will be much used
in Chap. 10.



200 9 The Initial Data Problem

Fig. 9.4 Extended hypersurface Σ ′
0 depicted in the Kruskal–Szekeres representation of Schwarz-

schild spacetime. R stands for Schwarzschild radial coordinate and r for the isotropic radial coor-
dinate. R = 0 is the singularity and R = 2m the event horizon. Σ ′

0 is nothing but a hypersurface
t = const, where t is the Schwarzschild time coordinate. In this diagram, these hypersurfaces are
straight lines and the Einstein–Rosen bridge S is reduced to a point

9.2.6 Bowen–York Initial Data

Let us select the same simple free data as above, namely

γ̃ij = fij, Âij
TT = 0, K = 0, Ẽ = 0 and p̃i = 0. (9.62)

For the hypersurface Σ0, instead of R
3 minus a ball, we choose R

3 minus a
point:

Σ0 = R
3\{O}. (9.63)

The removed point O is called a puncture [35]. The topology of Σ0 is S
2 × R; it

differs from the topology considered in Sect. 9.2.5 (R3 minus a ball); actually it is
the same topology as that of the extended manifold Σ ′

0 (cf. Fig. 9.3).
Thanks to the choice (9.62), the system to be solved is still (9.37)–(9.38). If we

choose the trivial solution X = 0 for Eq. (9.38), we are back to the slice of Schwarz-
schild spacetime considered in Sect. 9.2.5, except that now Σ0 is the extended man-
ifold previously denoted Σ ′

0.

A simple non-trivial solution to Eq. (9.38) has been obtained by Bowen and York
[36] (see also Ref. [37]). Given a Cartesian coordinate system (xi) = (x, y, z) on
Σ0 (i.e. a coordinate system such that fij = diag(1, 1, 1)) with respect to which the
coordinates of the puncture O are (0, 0, 0), this solution writes
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Xi = − 1

4r

(
7f ijPj + Pjxjxi

r2

)
− 1

r3 εij
kSjx

k, (9.64)

where r := √
x2 + y2 + z2, ε

ij
k is the Levi–Civita tensor associated with the flat

metric f (cf. Sect. 2.3.4) and (Pi, Sj) = (P1, P2, P3, S1, S2, S3) are six real numbers,
which constitute the six parameters of the Bowen–York solution. Notice that since
r �= 0 on Σ0, the Bowen–York solution is a regular and smooth solution on the entire
Σ0.

Example 9.2 Choosing Pi = (0, P, 0) and Si = (0, 0, S), where P and S
are two real numbers, leads to the following expression of the Bowen–York
solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xx = −P

4

xy

r3 + S
y

r3

Xy = − P

4r

(
7 + y2

r2

)
− S

x

r3

Xz = −P

4

xz

r3

(9.65)

The conformal traceless extrinsic curvature corresponding to the solution (9.64)
is deduced from formula (9.9), which in the present case reduces to Âij = (LX)ij;
one gets

Âij = 3

2r3

[
xiPj + xjPi −

(
f ij − xixj

r2

)
Pkxk

]
+ 3

r5

(
εik

lSkxlxj + εjk
lSkxlxi

)
,

(9.66)

where Pi := f ijPj. The tensor Âij given by Eq. (9.66) is called the Bowen–York
extrinsic curvature . Notice that the Pi part of Âij decays asymptotically as O(r−2),

whereas the Si part decays as O(r−3).

Remark 9.2 Actually the expression of Âij given in the original Bowen–York article
[36] contains an additional term with respect to Eq. (9.66), but the role of this extra
term is only to ensure that the solution is isometric through an inversion across
some sphere. We are not interested by such a property here, so we have dropped this
term. Therefore, strictly speaking, we should name expression (9.66) the simplified
Bowen–York extrinsic curvature.
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Example 9.3 Choosing Pi = (0, P, 0) and Si = (0, 0, S) as in the previous
example [Eq. (9.65)], we get

Âxx = − 3P

2r3 y

(
1 − x2

r2

)
− 6S

r5
xy (9.67)

Âxy = 3P

2r3 x

(
1 + y2

r2

)
+ 3S

r5
(x2 − y2) (9.68)

Âxz = 3P

2r5
xyz − 3S

r5
yz (9.69)

Âyy = 3P

2r3 y

(
1 + y2

r2

)
+ 6S

r5
xy (9.70)

Âyz = 3P

2r3 z

(
1 + y2

r2

)
+ 3S

r5
xz (9.71)

Âzz = − 3P

2r3 y

(
1 − z2

r2

)
. (9.72)

In particular we verify that Âij is traceless: γ̃ijÂij = fijÂij = Âxx + Âyy

+ Âzz = 0.

The Bowen–York extrinsic curvature provides an analytical solution of the
momentum constraint (9.38) but there remains to solve the Hamiltonian constraint
(9.37) for Ψ, with the asymptotic flatness boundary condition Ψ = 1 when r → ∞.

Since X �= 0, Eq. (9.37) is no longer a simple Laplace equation, as in Sect. 9.2.5,
but a non-linear elliptic equation. There is no hope to get any analytical solution and
one must solve Eq. (9.37) numerically to get Ψ and reconstruct the full initial data
(γ , K) via Eqs. (9.23)–(9.24).

Let us now discuss the physical significance of the parameters (Pi, Si) of the
Bowen–York solution. First of all, the ADM momentum of the initial data (Σ0, γ , K)

is computed via formula (8.40). Taking into account that Ψ is asymptotically one
and longitudinal part K vanishes, we can write

PADM
i = 1

8π
lim

r→∞

∮
r=const

Âikxkr sin θ dθ dϕ, i ∈ {1, 2, 3},

where we have used the fact that, within the Cartesian coordinates (xi) = (x, y, z),
(∂ i)

j = δ
j
i and sk = xk/r. If we insert expression (9.66) for Âjk in this formula, we

notice that the Si part decays too fast to contribute to the integral; there remains only
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PADM
i = 1

8π
lim

r→∞

∮
r=const

3

2r2

[
xiPjx

j + r2Pi −
(

xi − xir2

r2

)
︸ ︷︷ ︸

0

Pkxk
]

sin θ dθ dϕ

= 3

16π

(
Pj

∮
r=const

xixj

r2 sin θdθ dϕ + Pi

∮
r=const

sin θ dθ dϕ

︸ ︷︷ ︸
4π

)
. (9.73)

Now ∮
r=const

xixj

r2 sin θdθ dϕ = δij
∮

r=const

(xj)2

r2 sin θdθ dϕ

= δij 1

3

∮
r=const

r2

r2 sin θdθ dϕ = 4π

3
δij,

so that Eq. (9.73) becomes
PADM

i = 3

16π

(
4π

3
+ 4π

)
Pi,

i.e.

PADM
i = Pi . (9.74)

Hence the parameters Pi of the Bowen–York solution are nothing but the three com-
ponents of the ADM linear momentum of the hypersurface Σ0.

Regarding the angular momentum, we notice that since γ̃ij = fij in the present
case, the Cartesian coordinates (xi) = (x, y, z) belong to the quasi-isotropic gauge
introduced in Sect. 8.5.2 (condition (8.46) is trivially fulfilled). We may then use
formula (8.45) to define the angular momentum of Bowen–York initial. Again, since
Ψ → 1 at spatial infinity and K = 0, we can write

Ji = 1

8π
lim

r→∞

∮
r=const

Âjk(φi)
jxkr sin θ dθ dϕ, i ∈ {1, 2, 3}.

Substituting expression (9.66) for Âjk as well as expression (9.66) for (φi)
j, we get

that only the Si part contribute to this integral. After some computation, we find

Ji = Si . (9.75)

Hence the parameters Si of the Bowen–York solution are nothing but the three com-
ponents of the angular momentum of the hypersurface Σ0.

Remark 9.3 The Bowen–York solution with Pi = 0 and Si = 0 reduces to the
momentarily static solution found in Sect. 9.2.5, i.e. is a slice t = const of the
Schwarzschild spacetime (t being the Schwarzschild time coordinate). However
Bowen–York initial data with Pi = 0 and Si �= 0 do not constitute a slice of a
stationary black hole spacetime, i.e. a Kerr spacetime. Indeed, it has been shown
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[38] (see also [39]) that there does not exist any foliation of Kerr spacetime by
hypersurfaces which (i) are axisymmetric, (ii) smoothly reduce in the non-rotating
limit to the hypersurfaces of constant Schwarzschild time and (iii) are conformally
flat, i.e. have induced metric γ̃ = f , as the Bowen–York hypersurfaces have. This
means that a Bowen–York solution with Si �= 0 does represent initial data for a rotat-
ing black hole, but this black hole is not stationary: it is “surrounded” by gravitational
radiation, as demonstrated by the time development of these initial data [40, 41].

9.3 Conformal Thin Sandwich Method

9.3.1 The Original Conformal Thin Sandwich Method

An alternative to the conformal transverse-traceless method for computing initial
data has been introduced by York in 1999 [8]. It is motivated by expression (7.64)
for the traceless part of the extrinsic curvature scaled with α = −4:

Ãij = 1

2N

[(
∂

∂t
− Lβ

)
γ̃ ij − 2

3
D̃kβ

k γ̃ ij
]

. (9.76)

Noticing that [cf. Eq. (9.11)]

−Lβ γ̃ ij = (L̃β)ij + 2

3
D̃kβ

k, (9.77)

and introducing the short-hand notation

˙̃γ ij := ∂

∂t
γ̃ ij, (9.78)

we can rewrite Eq. (9.76) as

Ãij = 1

2N

[ ˙̃γ ij + (L̃β)ij
]
. (9.79)

The relation between Ãij and Âij is [cf. Eq. (7.85)]

Âij = Ψ 6Ãij. (9.80)

Accordingly, Eq. (9.79) yields

Âij = 1

2Ñ

[ ˙̃γ ij + (L̃β)ij
]

, (9.81)

where we have introduced the conformal lapse

Ñ := Ψ −6N . (9.82)
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Equation (9.81) constitutes a decomposition of Âij alternative to the longitudi-
nal/transverse decomposition (9.9). Instead of expressing Âij in terms of a vector
X and a TT tensor Âij

TT, it expresses it in terms of the shift vector β, the time deriv-
ative of the conformal metric, ˙̃γ ij, and the conformal lapse Ñ .

The Hamiltonian constraint, written as the Lichnerowicz equation (9.81), takes
the same form as before:

D̃iD̃
iΨ − R̃

8
Ψ + 1

8
ÂijÂ

ijΨ −7 + 2π ẼΨ −3 − K2

12
Ψ 5 = 0 , (9.83)

except that now Âij is to be understood as the combination (9.81) of β i, ˙̃γ ij and Ñ .

On the other side, the momentum constraint (9.6) becomes, once expression (9.81)
is substituted for Âij,

D̃j

(
1

Ñ
(L̃β)ij

)
+ D̃j

(
1

Ñ
˙̃γ ij

)
− 4

3
Ψ 6D̃iK = 16π p̃i . (9.84)

In view of the system (9.83)–(9.84), the method to compute initial data consists in
choosing freely γ̃ij, ˙̃γ ij, K , Ñ, Ẽ and p̃i on Σ0 and solving (9.83)–(9.84) to get Ψ

and β i. This method is called conformal thin sandwich (CTS ), because one input is
the time derivative ˙̃γ ij, which can be obtained from the value of the conformal metric
on two neighbouring hypersurfaces Σt and Σt+δt (“thin sandwich” view point).

Remark 9.4 The term “thin sandwich” originates from a previous method devised in
the early sixties by Wheeler and his collaborators [42, 43]. Contrary to the methods
exposed here, the thin sandwich method was not based on a conformal decomposition:
it considered the constraint equations (9.1)–(9.2) as a system to be solved for the
lapse N and the shift vector β, given the metric γ and its time derivative. The
extrinsic curvature which appears in (9.1)–(9.2) was then considered as the function
of γ , ∂γ /∂t, N and β given by Eq. (5.68). However, the thin sandwich system does
have any solution except in special cases [44]. On the contrary the conformal thin
sandwich method introduced by York [8] and exposed above was shown to be generic
[30].

As for the conformal transverse-traceless method treated in Sect. 9.2, on CMC
hypersurfaces, Eq. (9.84) decouples from Eq. (9.83) and becomes an elliptic linear
equation for β.

9.3.2 Extended Conformal Thin Sandwich Method

An input of the above method is the conformal lapse Ñ . Considering the astrophysical
problem stated in Sect. 9.1.1, it is not clear how to pick a relevant value for Ñ . Instead
of choosing an arbitrary value, Pfeiffer and York [9] have suggested to compute Ñ
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from the Einstein equation giving the time derivative of the trace K of the extrinsic
curvature, i.e. Eq. (7.90):

(
∂

∂t
− Lβ

)
K = − Ψ −4

(
D̃iD̃

iN + 2D̃i ln Ψ D̃iN
)

+ N

[
4π(E + S) + ÃijÃ

ij + K2

3

]
.

(9.85)

This amounts to add this equation to the initial data system. More precisely, Pfeiffer
and York [9] suggested to combine Eq. (9.85) with the Hamiltonian constraint to get
an equation involving the quantity NΨ = ÑΨ 7 and containing no scalar products of
gradients as the D̃i ln Ψ D̃iN term in Eq. (9.85), thanks to the identity

D̃iD̃
iN + 2D̃i ln Ψ D̃iN = Ψ −1

[
D̃iD̃

i(NΨ ) + ND̃iD̃
iΨ

]
.

Expressing the left-hand side of the above equation in terms of Eq. (9.85) and sub-
stituting D̃iD̃iΨ in the right-hand side by its expression deduced from Eq. (9.83),
we get

D̃iD̃
i(ÑΨ 7) − (ÑΨ 7)

[
1

8
R̃ + 5

12
K2Ψ 4 + 7

8
ÂijÂ

ijΨ −8 + 2π(Ẽ + 2S̃)Ψ −4
]

+
(

K̇ − β iD̃iK
)

Ψ 5 = 0,

(9.86)
where we have used the short-hand notation

K̇ := ∂K

∂t
(9.87)

and have set

S̃ := Ψ 8S. (9.88)

Adding Eq. (9.86) to Eqs. (9.83) and (9.84), the initial data system becomes

D̃iD̃
iΨ − R̃

8
Ψ + 1

8
ÂijÂ

ijΨ −7 + 2π ẼΨ −3 − K2

12
Ψ 5 = 0 (9.89)

D̃j

(
1

Ñ
(L̃β)ij

)
+ D̃j

(
1

Ñ
˙̃γ ij

)
− 4

3
Ψ 6D̃iK = 16π p̃i (9.90)

D̃iD̃i(ÑΨ 7) − (ÑΨ 7)

[
R̃
8 + 5

12 K2Ψ 4 + 7
8 ÂijÂijΨ −8 + 2π(Ẽ + 2S̃)Ψ −4

]

+
(

K̇ − β iD̃iK
)

Ψ 5 = 0
,

(9.91)
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where Âij is the function of Ñ, β i, γ̃ij and ˙̃γ ij defined by Eq. (9.81). Equations
(9.89)–(9.91) constitute the extended conformal thin sandwich (XCTS) system for
the initial data problem. The free data are the conformal metric γ̃ , its coordinate time
derivative ˙̃γ ,the extrinsic curvature trace K, its coordinate time derivative K̇, and the
rescaled matter variables Ẽ, S̃ and p̃i. The constrained data are the conformal factor
Ψ, the conformal lapse Ñ and the shift vector β.

Remark 9.5 The XCTS system (9.89)–(9.91) is a coupled system. Contrary to the
CTT system (9.19)–(9.20), the assumption of constant mean curvature, and in par-
ticular of maximal slicing, does not allow to decouple it.

When solving the XCTS system (9.89)–(9.91) for black hole spacetimes, one may
deal with a manifold Σ0 with some non-trivial topology. For instance it can be R

3

minus a ball (excised sphere), as in Fig. 9.1. Taking into account the elliptic nature
of the XCTS system, one has to put boundary conditions on the excised sphere to
get a unique solution. We shall not discuss these conditions here and refer the reader
to [45–50].

9.3.3 XCTS at Work: Static Black Hole Example

Let us illustrate the extended conformal thin sandwich method on a simple example.

Example 9.4 Take for the hypersurface Σ0 the punctured manifold considered
in Sect. 9.2.6, namely

Σ0 = R
3\{O}. (9.92)

For the free data, let us perform the simplest choice:

γ̃ij = fij, ˙̃γ ij = 0, K = 0, K̇ = 0, Ẽ = 0, S̃ = 0, and p̃i = 0,

(9.93)

i.e. we are searching for vacuum initial data on a maximal and conformally flat
hypersurface with all the freely specifiable time derivatives set to zero. Thanks
to (9.93), the XCTS system (9.89)–(9.91) reduces to

ΔΨ + 1

8
ÂijÂ

ijΨ −7 = 0 (9.94)

D̄j

(
1

Ñ
(Lβ)ij

)
= 0 (9.95)

Δ(ÑΨ 7) − 7

8
ÂijÂ

ijΨ −1Ñ = 0. (9.96)
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Aiming at finding the simplest solution, we notice that

β = 0 (9.97)

fulfills Eq. (9.95). Together with ˙̃γ ij = 0, this leads to [cf. Eq. (9.81)]

Âij = 0. (9.98)

The system (9.94)–(9.96) reduces then further:

ΔΨ = 0 (9.99)

Δ(ÑΨ 7) = 0. (9.100)

Hence we have only two Laplace equations to solve. Moreover Eq. (9.99)
decouples from Eq. (9.100). For simplicity, let us assume spherical symmetry
around the puncture O. We introduce an adapted spherical coordinate system
(xi) = (r, θ, ϕ) on Σ0. The puncture O is then at r = 0. The simplest non-
trivial solution of (9.99) which obeys the asymptotic flatness condition Ψ → 1
as r → +∞ is

Ψ = 1 + m

2r
, (9.101)

where as in Sect. 9.2.5, the constant m is the ADM mass of Σ0 [cf. Eq. (9.57)].
Notice that since r = 0 is excluded from Σ0, Ψ is a perfectly regular solution
on the entire manifold Σ0. Let us recall that the Riemannian manifold (Σ0, γ )

corresponding to this value of Ψ via γ = Ψ 4f is the Riemannian manifold
denoted (Σ ′

0, γ ) in Sect. 9.2.5 and depicted in Fig. 9.3. In particular it has two
asymptotically flat ends: r → +∞ and r → 0 (the puncture).

As for Eq. (9.99), the simplest solution of Eq. (9.100) obeying the asymp-
totic flatness requirement ÑΨ 7 → 1 as r → +∞ is

ÑΨ 7 = 1 + a

r
, (9.102)

where a is some constant. Let us determine a from the value of the lapse
function at the second asymptotically flat end r → 0. The lapse being related
to Ñ via Eq. (9.82), Eq. (9.102) is equivalent to

N =
(

1 + a

r

)
Ψ −1 =

(
1 + a

r

) (
1 + m

2r

)−1 = r + a

r + m/2
. (9.103)
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Hence

lim
r→0

N = 2a

m
. (9.104)

There are two natural choices for limr→0 N . The first one is

lim
r→0

N = 1, (9.105)

yielding a = m/2. Then, from Eq. (9.103) N=1 everywhere on Σ0. This value
of N corresponds to a geodesic slicing (cf. Sect. 5.4.2). The second choice is

lim
r→0

N = −1. (9.106)

This choice is compatible with asymptotic flatness: it simply means that the
coordinate time t is running “backward” near the asymptotic flat end r → 0.

This contradicts the assumption N > 0 in the definition of the lapse function
given in Sect. 4.3.1. However, we shall generalize here this definition to allow
for negative values: whereas the unit vector n is always future-oriented, the
scalar field t is allowed to decrease towards the future. Such a situation has
already been encountered for the part of the slices t = const located on the
left side of Fig. 9.4. Once reported into Eq. (9.104), the choice (9.106) yields
a = −m/2, so that

N =
(

1 − m

2r

) (
1 + m

2r

)−1
. (9.107)

Gathering relations (9.97), (9.101) and (9.107), we arrive at the following
expression of the spacetime metric components:

gμvdxμdxv = −
(

1 − m
2r

1 + m
2r

)2

dt2 +
(

1 + m

2r

)4 [
dr2 + r2(dθ2 + sin2 θdϕ2)

]
.

(9.108)
We recognize the line element of Schwarzschild spacetime in isotropic coor-
dinates [cf. Eq. (7.23)]. Hence we recover the same initial data as in Sect. 9.2.5
and depicted in Figs. 9.3 and 9.4. The bonus is that we have the complete
expression of the metric g on Σ0, and not only the induced metric γ .

Remark 9.6 The choices (9.105) and (9.106) for the asymptotic value of the
lapse both lead to a momentarily static initial slice in Schwarzschild spacetime.
The difference is that the time development corresponding to choice (9.105)
(geodesic slicing) will depend on t, whereas the time development correspond-
ing to choice (9.106) will not, since in the latter case ∂ t is a Killing vector.
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9.3.4 Uniqueness Issue

Pfeiffer and York [51] have exhibited a choice of vacuum free data (γ̃ij, ˙̃γ ij, K, K̇)

for which the solution (Ψ, Ñ, β i) to the XCTS system (9.89)–(9.91) is not unique
(actually two solutions are found). The conformal metric γ̃ is the flat metric plus
a linearized quadrupolar gravitational wave, as obtained by Teukolsky [52], with a
tunable amplitude. ˙̃γ ij corresponds to the time derivative of this wave, and both K and
K̇ are chosen to zero. On the contrary, for the same free data, with K̇ = 0 substituted
by Ñ = 1, Pfeiffer and York have shown that the original conformal thin sandwich
method as described in Sect. 9.3.1 leads to a unique solution (or no solution at all if
the amplitude of the wave is two large).

Baumgarte, Ó Murchadha and Pfeiffer [53] have argued that the lack of uniqueness
for the XCTS system may be due to the term

−7

8
(ÑΨ 7)ÂijÂ

ijΨ −8 = − 7

32
Ψ 6γ̃ ik γ̃ jl

[ ˙̃γ ij + (L̃β)ij
] [ ˙̃γ kl + (L̃β)kl

]
(ÑΨ 7)−1

(9.109)
in Eq. (9.91). Indeed, if we proceed as for the analysis of Lichnerowicz equation
in Sect. 9.2.4, we notice that this term, with the minus sign and the negative power
of (ÑΨ 7), makes the linearization of Eq. (9.91) of the type D̃iD̃iε + αε = σ, with
α > 0. This “wrong” sign of α prevents the application of the maximum principle
to guarantee the uniqueness of the solution.

The non-uniqueness of solution of the XCTS system for certain choice of free
data has been confirmed by Walsh [54] by means of bifurcation theory.

It turned out that for some highly relativistic systems, this non-uniqueness can be
an issue and prevent numerical codes to converge [55]. A solution has been found
[56, 55] and consists in solving an extra vector equation, of the type of Eq. (9.20),
for the longitudinal part of Âij.

9.3.5 Comparing CTT, CTS and XCTS

The conformal transverse traceless (CTT) method exposed in Sect. 9.2 and the
(extended) conformal thin sandwich (XCTS) method considered here differ by the
choice of free data: whereas both methods use the conformal metric γ̃ and the trace
of the extrinsic curvature K as free data, CTT employs in addition Âij

TT, whereas for
CTS the additional free data are ˙̃γ ij and Ñ . For XCTS, it is ˙̃γ ij and K̇ instead. Since
Âij

TT is directly related to the extrinsic curvature and the latter is linked to the canon-
ical momentum of the gravitational field in the Hamiltonian formulation of general
relativity (cf. Sect. 5.5), the CTT method can be considered as the approach to the
initial data problem in the Hamiltonian representation. On the other side, ˙̃γ ij being
the “velocity” of γ̃ ij, the (X)CTS method constitutes the approach in the Lagrangian
representation [57].
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Remark 9.7 The (X)CTS method assumes that the conformal metric is unimodular:
det(γ̃ij) = f [Eq. (7.18)] (since Eq. (9.81) follows from this assumption), whereas
the CTT method can be applied with any conformal metric.

The advantage of CTT is that its mathematical theory is well developed, yielding
existence and uniqueness theorems, at least for constant mean curvature (CMC)
slices. The mathematical theory of CTS is very close to CTT. In particular, the
momentum constraint decouples from the Hamiltonian constraint on CMC slices. On
the contrary, XCTS has a much more involved mathematical structure. In particular
the CMC slicing does not result in any decoupling in this case. The advantage of
XCTS is then to be better suited to the description of quasi-stationary spacetimes,
since ˙̃γ ij = 0 and K̇ = 0 are necessary conditions for ∂ t to be a Killing vector.
This makes XCTS the method to be used in order to prepare initial data in quasi-
equilibrium. For instance, it has been shown [58, 59] that XCTS yields orbiting
binary black hole configurations in much better agreement with post-Newtonian
computations than the CTT treatment based on a superposition of two Bowen–York
solutions.

A detailed comparison of CTT and XCTS for a single spinning or boosted black
hole has been performed by Laguna [60].

9.4 Initial Data for Binary Systems

A major topic of contemporary numerical relativity is the computation of the merger
of a binary system of black holes or neutron stars, for such systems are among the most
promising sources of gravitational radiation for the interferometric detectors either
ground-based (LIGO, VIRGO, GEO600, TAMA, LCGT) or in space (LISA/NGO).
The problem of preparing initial data for these systems has therefore received a lot
of attention in the past decade.

9.4.1 Helical Symmetry

Due to the gravitational-radiation reaction, a relativistic binary system has an inspiral
motion, leading to the merger of the two components. However, when the two bodies
are sufficiently far apart, one may approximate the spiraling orbits by closed ones.
Moreover, it is well known that gravitational radiation circularizes the orbits very
efficiently, at least for comparable mass systems [61]. We may then consider that the
motion is described by a sequence of closed circular orbits.

The geometrical translation of this physical assumption is that the spacetime
(M , g) is endowed with some symmetry, called helical symmetry. Indeed exactly
circular orbits imply the existence of a one-parameter symmetry group such that the
associated Killing vector � obeys the following properties [62]: (i) � is timelike near
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Fig. 9.5 Action of the
helical symmetry group,
with Killing vector �. χτ (P)

is the displacement of the
point P by the member of the
symmetry group of
parameter τ. N and β are
respectively the lapse
function and the shift vector
associated with coordinates
adapted to the symmetry, i.e.
coordinates (t, xi) such that
∂ t = �

the system, (ii) far from it, � is spacelike but there exists a smallest number T > 0
such that the separation between any point P and its image χT (P) under the symmetry
group is timelike (cf. Fig. 9.5). � is called a helical Killing vector, its field lines in a
spacetime diagram being helices (cf. Fig. 9.5).

Helical symmetry is exact in theories of gravity where gravitational radiation does
not exist, namely:

• in Newtonian gravity,
• in post-Newtonian gravity, up to the second order,
• in the Isenberg-Wilson-Mathews approximation to general relativity discussed in

Sect. 7.6.

Moreover helical symmetry can be exact in full general relativity for a non-
axisymmetric system (such as a binary) with standing gravitational waves [63]. But
notice that a spacetime with helical symmetry and standing gravitational waves can-
not be asymptotically flat [64].

To treat helically symmetric spacetimes, it is natural to choose coordinates (t, xi)

that are adapted to the symmetry, i.e. such that

∂ t = �. (9.110)

Then all the fields are independent of the coordinate t. In particular,

˙̃γ ij = 0 and K̇ = 0. (9.111)

If we employ the XCTS formalism to compute initial data, we therefore get some
definite prescription for the free data ˙̃γ ij and K̇ . On the contrary, the requirements
(9.111) do not have any immediate translation in the CTT formalism.

Remark 9.8 Helical symmetry can also be useful to treat binary black holes outside
the scope of the 3+1 formalism, as shown by Klein [65], who developed a quotient
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space formalism to reduce the problem to a 3-dimensional SL(2, R)/SO(1, 1) sigma
model.

Taking into account (9.111) and choosing maximal slicing (K = 0), the XCTS
system (9.89)–(9.91) becomes

D̃iD̃
iΨ − R̃

8
Ψ + 1

8
ÂijÂ

ijΨ −7 + 2π ẼΨ −3 = 0 (9.112)

D̃j

(
1

Ñ
(L̃β)ij

)
− 16π p̃i = 0 (9.113)

D̃iD̃
i(ÑΨ 7) − (ÑΨ 7)

[
R̃

8
+ 7

8
ÂijÂ

ijΨ −8 + 2π(Ẽ + 2S̃)Ψ −4

]
= 0, (9.114)

where [cf. Eq. (9.81)]

Âij = 1

2Ñ
(L̃β)ij. (9.115)

9.4.2 Helical Symmetry and IWM Approximation

If we choose, as part of the free data, the conformal metric to be flat,

γ̃ij = fij, (9.116)

then the helically symmetric XCTS system (9.112)–(9.114) reduces to

ΔΨ + 1

8
ÂijÂ

ijΨ −7 + 2π ẼΨ −3 = 0 (9.117)

Δβ i + 1

3
D̄iD̄jβ

j − (Lβ)ijD̄j ln Ñ = 16π Ñ p̃i (9.118)

Δ(ÑΨ 7) − (ÑΨ 7)

[
7

8
ÂijÂ

ijΨ −8 + 2π(Ẽ + 2S̃)Ψ −4
]

= 0, (9.119)

where

Âij = 1

2Ñ
(Lβ)ij (9.120)
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and D̄f is the connection associated with the flat metric f , Δ := D̄iD̄i is the flat
Laplacian [Eq. (9.39)], and (Lβ)ij := D̄iβ j + D̄jβ i − 2

3 D̄kβ
kf ij [Eq. (7.107)].

We remark that the system (9.117)–(9.119) is identical to the Isenberg–Wilson–
Mathews (IWM) system (7.110)–(7.112) presented in Sect. 7.6: given that Ẽ =
Ψ 8E, p̃i = Ψ 10pi, Ñ = Ψ −6N, Âij = Ψ 6Ãij and ÂijÂij = Ψ 12ÃijÃij, Eq. (9.117)
coincides with Eq. (7.111), Eq. (9.118) coincides with Eq. (7.112) and Eq. (9.119)
is a combination of Eqs. (7.110) and (7.111). Hence, within helical symmetry, the
XCTS system with the choice K = 0 and γ̃ = f is equivalent to the IWM system.

Remark 9.9 Contrary to IWM, XCTS is not some approximation to general rela-
tivity: it provides exact initial data. The only thing that may be questioned is the
astrophysical relevance of the XCTS data with γ̃ = f .

9.4.3 Initial Data for Orbiting Binary Black Holes

The concept of helical symmetry for generating orbiting binary black hole initial
data has been introduced in 2002 by Gourgoulhon, Grandclément and Bonazzola
[66, 58]. The system of equations that these authors have derived is equivalent to
the XCTS system with γ̃ = f , their work being anterior to the formulation of the
XCTS method by Pfeiffer and York [9]. Since then other groups have combined
XCTS with helical symmetry to compute binary black hole initial data [45, 67, 68,
47]. Since all these studies are using a flat conformal metric [choice (9.116)], the
PDE system to be solved is (9.117)–(9.119), with the additional simplification Ẽ = 0
and p̃i = 0 (vacuum). The initial data manifold Σ0 is chosen to be R

3 minus two
balls:

Σ0 = R
3\(B1 ∪ B2). (9.121)

In addition to the asymptotic flatness conditions, some boundary conditions must be
provided on the surfaces S1 and S2 of B1 and B2. One choose boundary conditions
corresponding to a non-expanding horizon, since this concept characterizes black
holes in equilibrium. We shall not detail these boundary conditions here; they can be
found in Refs. [45, 69, 70, 48, 71]. The condition of non-expanding horizon provides
3 among the 5 required boundary conditions [for the 5 components (Ψ, Ñ, β i) ].
The two remaining boundary conditions are given by (i) the choice of the foliation
(choice of the value of N at S1 and S2) and (ii) the choice of the rotation state of
each black hole (“individual spin”), as explained in Ref. [47].

Numerical codes for solving the above system have been constructed by

• Grandclément et al. [58] for corotating binary black holes;
• Cook et al. [45, 47] and Pfeiffer et al. [72] for corotating and irrotational binary

black holes;
• Ansorg [67, 68] for corotating binary black holes;
• Grandclément [73] for irrotational binary black holes.
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Detailed comparisons with post-Newtonian initial data (either from the standard
post-Newtonian formalism [74] or from the Effective One-Body approach [75, 76])
have revealed a very good agreement, as shown in Refs. [59, 47]. More recently,
XCTS initial data have been computed relaxing the hypothesis γ̃ = f , using instead
for γ̃ a superposition of two boosted boosted Kerr–Schild metrics [77, 78].

An alternative to (9.121) for the initial data manifold would be to consider the
twice-punctured R

3:
Σ0 = R

3\{O1, O2}, (9.122)

where O1 and O2 are two points of R
3. This would constitute some extension to

the two bodies case of the punctured initial data discussed in Sect. 9.3.3. However,
as shown by Hannam et al. [79], it is not possible to find a solution of the helically
symmetric XCTS system with a regular lapse in this case.2 For this reason, initial data
based on the puncture manifold (9.122) are computed within the CTT framework
discussed in Sect. 9.2. As already mentioned, there is no natural way to implement
helical symmetry in this framework. One instead selects the free data Âij

TT to vanish
identically, as in the single black hole case treated in Sect. 9.2.5 and 9.2.6. Then

Âij = (L̃X)ij. (9.123)

The vector X must obey Eq. (9.38), which arises from the momentum constraint.
Since this equation is linear, one may choose for X a linear superposition of two
Bowen–York solutions (Sect. 9.2.6):

X = X(P(1),S(1)) + X(P(2),S(2)), (9.124)

where X(P(a),S(a)) (a = 1,2) is the Bowen–York solution (9.64) centered on Oa.

This method has been first implemented by Baumgarte in 2000 [81]. It has been
since then used by Baker et al. [82] and Ansorg et al. [83]. The initial data hence
obtained are close to helically symmetric XCTS initial data at large separation
but deviate significantly from them, as well as from post-Newtonian initial data,
when the two black holes are very close. This means that the Bowen–York extrinsic
curvature is bad for close binary systems in quasi-equilibrium (see discussion in
Ref. [59]).

Remark 9.10 Despite of this, CTT Bowen–York configurations have been often used
as initial data for binary black hole inspiral and merger computations by Baker et al.
[84–86] and Campanelli et al. [87–90]. Fortunately, these initial data had a relatively
large separation, so that they differed only slightly from the helically symmetric
XCTS ones.

Instead of choosing somewhat arbitrarily the free data of the CTT and XCTS
methods, notably setting γ̃ = f , one may deduce them from post-Newtonian results.
This has been done for the binary black hole problem by Tichy et al. [91], who have

2 See however Ref. [80] for some attempt to circumvent this.
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used the CTT method with the free data (γ̃ij, Âij
TT) given by the second order post-

Newtonian (2PN) metric. This method has been improved by Mundim et al. [92].
In the same spirit, Nissanke [93] has provided 2PN free data for both the CTT and
XCTS methods.

When evolved, all the binary black hole initial data discussed above show some
small but spurious eccentricity, of the order of 1% [94, 72]. This originates from
the circularity assumption (helical symmetry): due to the reaction to gravitational
radiation, real orbits should not be exactly circular but slightly inspiraling. Various
methods have been proposed to reduce the eccentricity so that the initial data are
closer to circular orbits. We shall not discuss them here and refer the reader to [95]
and references therein.

9.4.4 Initial Data for Orbiting Binary Neutron Stars

For computing initial data corresponding to orbiting binary neutron stars, one must
solve equations for the fluid motion in addition to the Einstein constraints. Basically
this amounts to solving ∇ · −→

T = 0 [Eq. (6.1)] in the context of helical symmetry.
One can then show that a first integral of motion exists in two cases: (i) the stars
are corotating, i.e. the fluid 4-velocity is colinear to the helical Killing vector (rigid
motion), (ii) the stars are irrotational, i.e. the fluid vorticity vanishes. The most
straightforward way to get the first integral of motion is by means of the Carter-
Lichnerowicz formulation of relativistic hydrodynamics, as shown in Sect. 7 of Ref.
[96]. Other derivations have been obtained in 1998 by Teukolsky [97] and Shibata
[98].

From the astrophysical point of view, the irrotational motion is much more inter-
esting than the corotating one, because the viscosity of neutron star matter is far too
low to ensure the synchronization of the stellar spins with the orbital motion. The
irrotational state is a very good approximation for neutron stars that are not millisec-
ond rotators. Indeed, for these stars the spin frequency is much lower than the orbital
frequency at the late stages of the inspiral and thus can be neglected.

The first initial data for binary neutron stars on circular orbits have been computed
by Baumgarte et al. in 1997 [99, 100] in the corotating case, and by Bonazzola et al. in
1999 [101] in the irrotational one. These results were based on a polytropic equation
of state. Since then configurations in the irrotational regime have been obtained

• for a polytropic equation of state [102–108];
• for nuclear matter equations of state issued from recent nuclear physics computa-

tions [108–110];
• for strange quark matter [111, 112].

All these computations are based on a flat conformal metric [choice (9.116)], by
solving the helically symmetric XCTS system (9.117)–(9.119), supplemented by
an elliptic equation for the velocity potential. Configurations based on a non-flat
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conformal metric have been obtained by Uryu, Limousin, Friedman, Gourgoulhon
and Shibata [113, 114]. The conformal metric is then deduced from a waveless
approximation developed by Shibata, Uryu and Friedman [115] and which goes
beyond the IWM approximation (see also [116]).

9.4.5 Initial Data for Black Hole: Neutron Star Binaries

Let us mention briefly that initial data for a mixed binary system, i.e. a system
composed of a black hole and a neutron star, have been obtained by Grandclément
[117] and Taniguchi, Baumgarte, Faber and Shapiro [118, 119]. Codes aiming at
computing such systems have also been presented by Ansorg [68] and Tsokaros and
Uryu [120].
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Chapter 10
Choice of Foliation and Spatial Coordinates

Abstract We discuss here the choice of spacetime coordinates, from a 3 + 1 point
of view. This amounts to discuss first the choice of foliation, via the lapse function:
the geodesic, maximal, harmonic, and 1+log slicings are presented here. In a second
stage, we focus on of the propagation of the spatial coordinates from slice to slice, via
the choice of the shift vector. We introduce the concepts of normal coordinates, min-
imal distortion and variants of it, Gamma freezing coordinates and Gamma drivers.
Finally we discuss choices that fix fully the spatial coordinates on a given slice:
spatial harmonic coordinates and Dirac gauge.

10.1 Introduction

Having investigated the initial data problem in the preceding chapter, the next logical
step is to discuss the evolution problem, i.e. the development (Σt, γ ) of initial data
(Σ0, γ , K). This constitutes the integration of the Cauchy problem introduced in
Sect. 5.4. As discussed in Sect. 5.4.1, a key feature of this problem is the freedom
of choice for the lapse function N and the shift vector β, reflecting respectively
the choice of foliation (Σt)t∈R and the choice of coordinates (xi) on each leaf Σt

of the foliation. These choices are crucial because they determine the specific form of
the 3+1 Einstein system (5.68)–(5.71) that one has actually to deal with. In particular,
depending of the choice of (N,β), this system can be made more hyperbolic or more
elliptic.

Extensive discussions about the various possible choices of foliations and
spatial coordinates can be found in the seminal articles by Smarr and York [1, 2]
as well as in the review articles by Alcubierre [3], Baumgarte and Shapiro [4], and
Lehner [5], or the textbooks by Alcubierre [6], Baumgarte and Shapiro [7] and
Choquet–Bruhat [8].

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 223
DOI: 10.1007/978-3-642-24525-1_10, © Springer-Verlag Berlin Heidelberg 2012



224 10 Choice of Foliation and Spatial Coordinates

10.2 Choice of Foliation

10.2.1 Geodesic Slicing

The simplest choice of foliation one might think about is the geodesic slicing, for
it corresponds to a unit lapse:

N = 1 . (10.1)

Since the 4-acceleration a of the Eulerian observers is nothing but the spatial gradient
of In N (logarithm of N) [cf. Eq. (4.19)], the choice (10.1) implies a = 0, i.e. the
worldlines of the Eulerian observers are geodesics, hence the name geodesic slic-
ing. Moreover the choice (10.1) implies that the proper time along these worldlines
coincides with the coordinate time t.

We have already used the geodesic slicing to discuss the basics feature of the 3+1
Einstein system in Sect. 5.4.2. We have also argued there that, due to the tendency of
timelike geodesics without vorticity (as the worldlines of the Eulerian observers are)
to focus and eventually cross, this type of foliation can become pathological within
a finite range of t.

Example 10.1 A simple example of geodesic slicing is provided by the
Painlevé–Gullstrand slicing of Schwarzschild spacetime discussed in Example
8.2. Indeed we have seen that for this slicing, N = 1 [Eq. (8.22a)].

Example 10.2 Another example of geodesic slicing, still in Schwarzschild
spacetime, is provided by the time development with N = 1 of the initial data
constructed in Sects. 9.2.5 and 9.3.3, namely the momentarily static slice tS = 0
of Schwarzschild spacetime (tS standing for the standard Schwarzschild time
coordinate), with topology R×S

2 (Einstein–Rosen bridge, cf. Sect. 9.2.5). The
resulting foliation is depicted in Fig. 10.1. It hits the singularity at t = πm,

reflecting the bad behavior of geodesic slicing.

In numerical relativity, geodesic slicings have been used by Nakamura, Oohara
and Kojima to perform in 1987 the first 3D evolutions of vacuum spacetimes with
gravitational waves [9]. However, as discussed in Ref. [10], the evolution was possible
only for a pretty limited range of t, because of the focusing property mentioned above.
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Fig. 10.1 Geodesic-slicing
evolution from the initial
slice t = tS = 0 of
Schwarzschild spacetime
depicted in a
Kruskal–Szekeres diagram.
R stands for Schwarzschild
radial coordinate (areal
radius), so that R = 0 is the
singularity and R = 2m is
the event horizon (figure
adapted from Fig. 2a
of [1])

Fig. 10.2 Deformation of a
volume V delimited by the
surface S in the
hypersurface Σ0

10.2.2 Maximal Slicing

A very famous type of foliation is maximal slicing, already encountered in Sect. 7.6
and in Chap. 9, where it plays a great role in decoupling the constraint equations.
The maximal slicing corresponds to the vanishing of the mean curvature of the
hypersurfaces Σt :

K = 0 . (10.2)

The fact that this condition leads to hypersurfaces of maximal volume can be seen as
follows. Consider some hypersurface Σ0 and a closed two-dimensional surface S
lying in Σ0 (cf. Fig. 10.2). The volume of the domain V enclosed in S is

V =
∫
V

√
γ d3x, (10.3)

where γ = det γij is the determinant of the metric γ with respect to some coordinates
(xi) used in Σt . Let us consider a small deformation V ′ of V that keeps the boundary
S fixed. V ′ is generated by a small displacement along a vector field v of every point
of V , such that v|S = 0. Without any loss of generality, we may consider that V ′
lies in a hypersurface Σ∂t that is a member of some “foliation” (Σt)t∈R such that
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Σt=0 = Σ0. The hypersurfaces Σt intersect each other at S , which violates condi-
tion (4.2) in the definition of a foliation given in Sect. 4.2.2, hence the quotes around
the word “foliation”. Let us consider a 3+1 coordinate system (t, xi) associated with
the “foliation” (Σt)t∈R and adapted to S in the sense that the position of S in these
coordinates does not depend upon t. The vector ∂ t associated to these coordinates is
then related to the displacement vector v by

v = δt∂ t . (10.4)

Introducing the lapse function N and shift vector β associated with the coordinates
(t, xi), the above relation becomes [cf. Eq. (5.29)] v = δt(Nn + β). Accordingly,
the condition v|S = 0 implies

N |S = 0 and β|S = 0. (10.5)

Let us define V(t) as the volume of the domain Vt delimited by S in Σt . It is given
by a formula identical to Eq. (10.3), except of course that the integration domain has
to be replaced by Vt . Moreover, the domain Vt lying at fixed values of the coordinates
(xi), we have

dV

dt
=

∫
Vt

∂
√

γ

∂t
d3x.

Replacing the integrand by means of formula (6.66), we get

dV

dt
=

∫
Vt

[
−NK + Diβ

i
] √

γ d3x. (10.6)

Now from the Gauss–Ostrogradsky theorem,
∫
Vt

Diβ
i√γ d3x =

∮
S

β isi
√

q d2y,

where s is the unit normal to S lying in Σt, q is the induced metric on S , (ya) are
coordinates on S and q = det qab. Since β vanishes on S [property (10.5)], the
above integral is identically zero and Eq. (10.6) reduces to

dV

dt
= −

∫
Vt

NK
√

γ d3x . (10.7)

We conclude that if K = 0 on Σ0, the volume V enclosed in S is extremal with
respect to variations of the domain delimited by S , provided that the boundary of
the domain remains S . In the Euclidean space, such an extremum would define
a minimal surface, the corresponding variation problem being a Plateau problem
[named after the Belgian physicist Joseph Plateau (1801–1883)]: given a closed
contour S (wire loop), find the surface V (soap film) of minimal area (minimal



10.2 Choice of Foliation 227

surface tension energy) bounded by S . However, in the present case of a Lorentzian
metric, it can be shown that the extremum is actually a maximum, hence the name
maximal slicing. For the same reason, a timelike geodesic between two points in
spacetime is the curve of maximum length joining these two points.

Demanding that the maximal slicing condition (10.2) holds for all hypersurfaces
Σt, once combined with the evolution equation (7.74) for K, yields the following
elliptic equation for the lapse function:

DiD
iN = N

[
4π(E + S) + KijK

ij
]

. (10.8)

Remark 10.1 We have already noticed that at the Newtonian limit, Eq. (10.8) reduces
to the Poisson equation for the gravitational potential Φ (cf. Sect. 7.5.1). Therefore the
maximal slicing can be considered as a natural generalization to the relativistic case of
the canonical slicing of Newtonian spacetime by hypersurfaces of constant absolute
time. In this respect, let us notice that the “beyond Newtonian” approximation of
general relativity constituted by the Isenberg–Wilson–Mathews approach discussed
in Sect. 7.6 is also based on maximal slicing.

Example 10.3 In Schwarzschild spacetime, the standard Schwarzschild time
coordinate t defines maximal hypersurfaces Σt, which are spacelike for R >

2m (R being Schwarzschild radial coordinate). Indeed these hypersurfaces are
totally geodesic: K = 0 (cf. Sect. 3.4.3), so that, in particular, K = trγ K = 0.

This maximal slicing is shown in Fig. 10.3. The corresponding lapse function
expressed in terms of the isotropic radial coordinate r is

N =
(

1 − m

2r

) (
1 + m

2r

)−1
. (10.9)

As shown in Sect. 9.3.3, the above expression can be derived by means of
the XCTS formalism. Notice that the foliation (Σt)t∈R does not penetrate
under the event horizon (R = 2m) and that the lapse is negative for r < m/2
(cf. discussion in Sect. 9.3.3 about negative lapse values).

Besides its nice geometrical definition, an interesting property of maximal slicing
is singularity avoidance. This is related to the fact that the set of Eulerian observers
of a maximal foliation define an incompressible flow: indeed, thanks to Eq. (3.66),
the condition K = 0 is equivalent to the incompressibility condition

∇ · n = 0 (10.10)

for the 4-velocity field n of the Eulerian observers. If we compare with the Eulerian
observers of geodesic slicings (Sect. 10.2.1), who have the tendency to squeeze, we
may say that maximal-slicing Eulerian observers do not converge because they are
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Fig. 10.3 Kruskal–Szekeres
diagram showing the
maximal slicing of
Schwarzschild spacetime
defined by the standard
Schwarzschild time
coordinate t. As for Fig. 10.1,
R stands for Schwarzschild
radial coordinate (areal
radius), so that R = 0 is the
singularity and R = 2m is
the event horizon, whereas r
stands for the isotropic radial
coordinate [cf. Eq. (9.108)]

accelerating (DN �= 0) in order to balance the focusing effect of gravity. Loosely
speaking, the incompressibility prevents the Eulerian observers from converging
towards the central singularity if the latter forms during the time evolution. This is
illustrated by the following example in Schwarzschild spacetime. A more extended
discussion of the singularity avoidance feature of maximal slicing can be found in
Baumgarte and Shapiro’s textbook [7].

Example 10.4 Let us consider the time development of the initial data con-
structed in Sects. 9.2.5 and 9.3.3, namely the momentarily static slice tS = 0
of Schwarzschild spacetime (with the Einstein–Rosen bridge). A first maximal
slicing development of these initial data is that based on Schwarzschild time
coordinate tS and discussed in Example 10.3. The corresponding lapse function
is given by Eq. (10.9) and is antisymmetric about the minimal surface r = m/2
(throat) (cf. Fig. 10.3). There exists a second maximal-slicing development of
the same initial data but with a lapse which is symmetric about the throat. It has
been found in 1973 by Estabrook et al. [11], as well as Reinhart [12]. The cor-
responding time coordinate t is different from Schwarzschild time coordinate
tS, except for t = 0 (initial slice tS = 0). In the coordinates (xα) = (t, R, θ, ϕ),

where R is Schwarzschild radial coordinate, the metric components obtained
by Estabrook et al. [11] (see also Refs. [13–15]) take the form

gμvdxμdxv = − N2dt2 +
(

1 − 2m

R
+ C(t)2

R4

)−1 (
dR + C(t)

R2 Ndt

)2

+ R2(dθ2 + sin2 θdϕ2),

(10.11)
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Fig. 10.4 Kruskal–Szekeres diagram depicting the maximal slicing of Schwarzschild spacetime
defined by the Reinhart/Estabrook et al. time function t [cf. Eq. (10.11)]. As for Fig. 10.1 and
Fig. 10.3, R stands for Schwarzschild radial coordinate (areal radius), so that R = 0 is the singularity
and R = 2m is the event horizon, whereas r stands for the isotropic radial coordinate. At the throat
(minimal surface), R = RC where RC is the function of t defined below Eq. (10.13) (figure adapted
from Fig. 1 of Ref. [11])

where

N = N(R, t) =
√

1 − 2m

R
+ C(t)2

R4

{
1 + dC

dt

∫ +∞

R

x4 dx[
x4 − 2mx3 + C(t)2

]3/2

}
,

(10.12)
and C(t) is the function of t defined implicitly by

t = −C
∫ +∞

RC

dx

(1 − 2m/x)
√

x4 − 2mx3 + C2
, (10.13)

RC being the unique root of the polynomial PC(x) := x4 − 2mx3 + C2 in the
interval (3m/2, 2m]. C(t) varies from 0 at t = 0 to C∞ := (3

√
3/4)m2 as

t → +∞. Accordingly, RC decays from 2m (t = 0) to 3m/2 (t → +∞). Actu-
ally, for C = C(t), RC represents the smallest value of the radial coordinate R
in the slice Σt . This maximal slicing of Schwarzschild spacetime is represented
in Fig. 10.4. We notice that, as t → +∞, the slices Σt accumulate on a limiting
hypersurface: the hypersurface R = 3m/2 (let us recall that for R < 2m,

the hypersurfaces R = const are spacelike and are thus eligible for a 3+1
foliation). Actually, it can be seen that the hypersurface R = 3m/2 is the only
hypersurface R = const which is spacelike and maximal [14]. If we compare
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with Fig. 10.1, we notice that, contrary to the geodesic slicing, the present
foliation never encounters the singularity.

The above example illustrates the singularity-avoidance property of maximal
slicing: while the entire spacetime outside the event horizon is covered by the folia-
tion, the hypersurfaces “pile up” in the black hole region so that they never reach the
singularity. As a consequence, in that region, the proper time (of Eulerian observers)
between two neighbouring hypersurfaces tends to zero as t increases. According to
Eq. (4.17), this implies

N → 0 as t → +∞. (10.14)

This “phenomenon” is called collapse of the lapse. Beyond the Schwarzschild
case discussed above, the collapse of the lapse is a generic feature of maximal slic-
ing of spacetimes describing black hole formation via gravitational collapse. For
instance, it occurs in the analytic solution obtained by Petrich et al. [16] for the
maximal slicing of the Oppenheimer-Snyder spacetime (gravitational collapse of a
spherically symmetric homogeneous ball of pressureless matter).

In numerical relativity, maximal slicing has been used in the computation of the
(axisymmetric) head-on collision of two black holes by Smarr et al. in the seven-
ties [17, 18], as well as in computations of axisymmetric gravitational collapse by
Nakamura and Sato (1981) [19, 20], Stark and Piran (1985) [21] and Evans (1986)
[22]. Actually Stark and Piran used a mixed type of foliation introduced by Bardeen
and Piran [23]: maximal slicing near the origin (r = 0) and polar slicing far from it.
The polar slicing is defined in spherical-type coordinates (xi) = (r, θ, ϕ) by

Kθ
θ + Kϕ

ϕ = 0, (10.15)

instead of Kr
r + Kθ

θ + Kϕ
ϕ = 0 for maximal slicing.

Whereas maximal slicing is a nice choice of foliation, with a clear geometrical
meaning, a natural Newtonian limit and a singularity-avoidance feature, it has not
been much used in 3D (no spatial symmetry) numerical relativity. The reason is
a technical one: imposing maximal slicing requires to solve the elliptic equation
(10.8) for the lapse and elliptic equations are usually CPU-time consuming, except
if one make uses of fast elliptic solvers [24, 25]. For this reason, most of the recent
computations of binary black hole inspiral and merger have been performed with the
1+log slicing, to be discussed in Sect. 10.2.4. Nevertheless, it is worth to note that
maximal slicing has been used for the first grazing collisions of binary black holes,
computed by Brügmann [26].

To avoid solving an elliptic equation while preserving most of the good proper-
ties of maximal slicing, an approximate maximal slicing has been introduced by
Shibata [27]. It consists in transforming Eq. (10.8) into a parabolic equation by adding
a term of the type ∂N/∂λ in the right-hand side and to compute the “λ-evolution”
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for some range of the parameter λ. This amounts to resolve a heat like equation.
Generically the solution converges towards a stationary one, so that ∂N/∂λ → 0 and
the original elliptic equation (10.8) is solved. The approximate maximal slicing has
been used by Shibata et al. to compute the merger of binary neutron stars [28–33],
as well as by Shibata and Sekiguchi for 2D (axisymmetric) gravitational collapses
[34–36] or 3D ones [37].

10.2.3 Harmonic Slicing

Another important category of time slicing is deduced from the standard harmonic
or de Donder condition for the spacetime coordinates (xα):

�	gxα = 0, (10.16)

where �	g := ∇μ∇μ is the d’Alembertian associated with the metric g and each coor-
dinate xα is considered as a scalar field on M . Harmonic coordinates have been
introduced by De Donder in 1921 [38] and have played an important role in theo-
retical developments, notably in Choquet–Bruhat’s demonstration [39] of the well-
posedness of the Cauchy problem for 3+1 Einstein equations (cf. Sect. 5.4.4).

The harmonic slicing is defined by requiring that the harmonic condition holds
for the x0 = t coordinate, but not necessarily for the other coordinates, leaving the
freedom to choose any coordinate (xi) in each hypersurface Σt:

�	gt = 0 . (10.17)

Since �	gt = ∇μ∇μt is the divergence of the vector field
−→∇ t, formula (2.65) gives

1√−g

∂

∂xμ

(√−ggμv ∂t

∂xv︸︷︷︸
δ0

v

)
= 0,

i.e.

∂

∂xμ

(√−ggμ0
)

= 0.

Thanks to the relation
√−g = N

√
γ [Eq. (5.55)], this equation becomes

∂

∂t

(
N

√
γ g00

)
+ ∂

∂xi

(
N

√
γ gi0

)
= 0.

Now, one reads on (5.51) that g00 = −1/N2 and gi0 = β i/N2. Thus

− ∂

∂t

(√
γ

N

)
+ ∂

∂xi

(√
γ

N
β i

)
= 0. (10.18)
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Expanding and reordering gives

∂N

∂t
− β i ∂N

∂xi
− N

[
1√
γ

∂
√

γ

∂t
− 1√

γ

∂

∂xi

(√
γ β i

)
︸ ︷︷ ︸

Diβ i

]
= 0.

Thanks to Eq. (6.66), the term in brackets can be replaced by −NK, so that the
harmonic slicing condition becomes

(
∂

∂t
− Lβ

)
N = −KN2 . (10.19)

Thus we get an evolution equation for the lapse function. This contrasts with
Eq. (10.1) for geodesic slicing and Eq. (10.8) for maximal slicing.

The harmonic slicing has been introduced by Choquet–Bruhat and Ruggeri (1983)
[40] as a way to put the 3+1 Einstein system in a hyperbolic form. It has been
considered more specifically in the context of numerical relativity by Bona and
Masso (1988) [41]. For a review and more references see Ref. [42].

Remark 10.2 The harmonic slicing equation (10.19) was already laid out by Smarr
and York in 1978 [43], as a part of the expression of de Donder coordinate condition
in terms of 3+1 variables.

Example 10.5 In Schwarzschild spacetime, the hypersurfaces of constant stan-
dard Schwarzschild time coordinate t = tS and depicted in Fig. 10.3 consti-
tute some harmonic slicing, in addition to being maximal (cf. Sect. 10.2.2).
Indeed, using Schwarzschild coordinates (t, R, θ, ϕ) or isotropic coordinates
(t, r, θ, ϕ), we have ∂N/∂t = 0 and β = 0. Since K = 0 for these hypersur-
faces, we conclude that the harmonic slicing condition (10.19) is satisfied.

Example 10.6 The above slicing does not penetrate under the event horizon.
A harmonic slicing of Schwarzschild spacetime (and more generally Kerr-
Newman spacetime) which passes smoothly through the event horizon has
been found by Bona and Massó [41], as well as Cook and Scheel [44]. It is
given by a time coordinate t that is related to Schwarzschild time tS by

t = tS + 2m ln

∣∣∣∣1 − 2m

R

∣∣∣∣ , (10.20)

where R is Schwarzschild radial coordinate (areal radius). The corresponding
expression of Schwarzschild metric is [44]
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gμvdxμdxv = −N2dt2 + 1

N2

(
dR + 4m2

R2 N2dt

)2

+ R2(dθ2 + sin2 θdϕ2),

(10.21)
where

N =
[(

1 + 2m

R

)(
1 + 4m2

R2

)]−1/2

. (10.22)

Notice that all metric coefficients are regular at the event horizon (R =
2m). This harmonic slicing is represented in a Kruskal–Szekeres diagram in
Fig. 1 of Ref. [44]. It is clear from that figure that the hypersurfaces Σt never
hit the singularity (contrary to those of the geodesic slicing shown in Fig. 10.1),
but they come arbitrary close to it as t → +∞.

We infer from the above example that the harmonic slicing has some singu-
larity avoidance feature, but weaker than that of maximal slicing: for the latter,
the hypersurfaces Σt never come close to the singularity as t → +∞ (cf. Fig.
10.4). This has been confirmed by means of numerical computations by Shibata and
Nakamura [10].

Remark 10.3 If one uses normal coordinates, i.e. spatial coordinates (xi) such that
β = 0, then the harmonic slicing condition in the form (10.23) is easily integrated to

N = C(xi)
√

γ , (10.23)

where C(xi) is an arbitrary function of the spatial coordinates, which does not depend
upon t. Equation (10.23) is as easy to implement as the geodesic slicing condition
(N = 1). It is related to the conformal time slicing introduced by Shibata and
Nakamura [45].

10.2.4 1+log Slicing

Bona, Massó, Seidel and Stela (1995) [46] have generalized the harmonic slicing
condition (10.19) to

(
∂

∂t
− Lβ

)
N = −KN2f (N), (10.24)

where f is an arbitrary function. The harmonic slicing corresponds to f (N) = 1. The
geodesic slicing also fulfills this relation with f (N) = 0. The choice f (N) = 2/N
leads to

(
∂

∂t
− Lβ

)
N = −2KN . (10.25)
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Substituting Eq. (6.66) for −KN, we obtain

(
∂

∂t
− Lβ

)
N = ∂

∂t
ln γ − 2Diβ

i. (10.26)

If normal coordinates are used, β = 0 and the above equation reduces to

∂N

∂t
= ∂

∂t
ln γ,

a solution of which is

N = 1 + ln γ. (10.27)

For this reason, a foliation whose lapse function obeys Eq. (10.25) is called
a 1+log slicing. The original 1+log condition (10.27) has been introduced by
Bernstein (1993) [47] and Anninos et al. (1995) [48] (see also Ref. [49]). Notice
that, even when β �= 0, we still define the 1+log slicing by condition (10.25),
although the “1+log” relation (10.27) does no longer hold.

Remark 10.4 As for the geodesic slicing [Eq. (10.1)], the harmonic slicing with zero
shift [Eq. (10.23)], the original 1+log slicing with zero shift [Eq. (10.27)] belongs
to the family of algebraic slicings [4, 50]: the determination of the lapse function
does not require to solve any equation. It is therefore very easy to implement.

Example 10.7 Examples of 1+log slicings of Schwarzschild spacetime can
be found in Refs. [7, 51–53], to which we refer the reader. In particular these
references discuss the so-called trumpet hypersurface to which some 1+log
slicings converge and which has a direct connection with the moving-puncture
approach to black holes in numerical relativity.

The 1+log slicing has stronger singularity avoidance properties than harmonic
slicing: it has been found to “mimic” maximal slicing [48].

Alcubierre has shown in 1997 [54] that for any slicing belonging to the family
(10.24), and in particular for the harmonic and 1+log slicings, some smooth initial
data (Σ0, γ ) can be found such that the foliation (Σt) become singular for a finite
value of t.

Remark 10.5 The above finding does not contradict the well-posedness of the
Cauchy problem established by Choquet–Bruhat in 1952 [39] for generic smooth
initial data by means of harmonic coordinates (which define a harmonic slicing) (cf.
Sect. 5.4.4). Indeed it must be remembered that Choquet-Bruhat’s theorem is a local
one, whereas the pathologies found by Alcubierre develop for a finite value of time.
Moreover, these pathologies are far from being generic, as the tremendous successes
of the 1+log slicing in numerical relativity have shown (see below).



10.2 Choice of Foliation 235

The 1+log slicing has been used the 3D investigations of the dynamics of relativis-
tic stars by Font et al. in 2002 [55]. It has also been used in most of the computations
of binary black hole inspiral and merger: Baker et al. [56–58], Campanelli et al.
[59–62], Sperhake [63], Diener et al. [64], Brügmann et al. [65, 66], and Herrmann
et al. [67, 68]. The first three groups employ exactly Eq. (10.25), whereas the last
two groups are using a modified (“zero-shift”) version:

∂N

∂t
= −2KN . (10.28)

This version has also been employed by Sekiguchi and Shibata for computing grav-
itational collapse of a stellar core to a black hole [69]. The 3D gravitational collapse
calculations of Baiotti et al. [70–72] are based on a slight modification of the 1+log
slicing: instead of Eq. (10.25), these authors have used

(
∂

∂t
− Lβ

)
N = −2N(K − K0), (10.29)

where K0 is the value of K at t = 0. The same choice is adopted in the binary neutron
star merger computations of Baiotti, Giacomazzo and Rezzolla [73, 74].

The original 1+log prescription (10.25) has also been employed in computations
of (i) neutron star—neutron star mergers by Kiuchi et al. [75] and (ii) neutron star—
black hole mergers by Kyutoku et al. [76].

Remark 10.6 There is a basic difference between maximal slicing and the other types
of foliations presented above (geodesic, harmonic and 1+log slicings): the property
of being maximal is applicable to a single hypersurface Σ0, whereas the property of
being geodesic, harmonic or 1+log are meaningful only for a foliation (Σt)t∈R. This
is reflected in the basic definition of these slicings: the maximal slicing is defined from
the extrinsic curvature tensor only (K = 0), which characterizes a single hypersurface
(cf. Chap. 3), whereas the definitions of geodesic, harmonic and 1+log slicings all
involve the lapse function N, which of course makes sense only for a foliation
(cf. Chap. 4).

10.3 Evolution of Spatial Coordinates

Having discussed the choice of the foliation (Σt)t∈R, let us turn now to the choice
of the coordinates (xi) in each hypersurface Σt . As discussed in Sect. 5.2.4, this is
done via the shift vector β. More precisely, once some coordinates (xi) are set in the
initial slice Σ0, the shift vector governs the propagation of these coordinates to all
the slices Σt .
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10.3.1 Normal Coordinates

As for the lapse choice N = 1 (geodesic slicing, Sect. 10.2.1), the simplest choice
for the shift vector is to set it to zero:

β = 0 . (10.30)

For this choice, the lines xi = const are normal to the hypersurfaces Σt

(cf. Fig. 5.1), hence the name normal coordinates. The alternative name is Eulerian
coordinates, defining the so-called Eulerian gauge [77]. This is of course justified
by the fact that the lines xi = const are then the worldlines of the Eulerian observers
introduced in Sect. 4.3.3.

Besides their simplicity, an advantage of normal coordinates is to be as regu-
lar as the foliation itself: they cannot introduce some pathology per themselves.
On the other hand, the major drawback of these coordinates is that they may lead to a
large coordinate shear, resulting in large values of the metric coefficients γij. This is
specially true if rotation is present. For instance, in Kerr or rotating star spacetimes,
the field lines of the stationary Killing vector ξ are not orthogonal to the hypersur-
faces t = const. Therefore, if one wishes to have coordinates adapted to stationarity,
i.e. to have ∂ t = ξ , one must allow for β �= 0.

Despite of the shear problem mentioned above, normal coordinates have been
used because of their simplicity in early treatments of two famous axisymmetric
problems in numerical relativity: the head-on collision of black holes by Smarr et al.
in 1976–1977 [17, 18] and the gravitational collapse of a rotating star by Nakamura
in 1981 [19, 20]. Normal coordinates have also been used in the 3D evolution of
gravitational waves performed by Shibata and Nakamura [10] and Baumgarte and
Shapiro [78], as well as in the 3D grazing collisions of binary black holes computed
by Brügmann [26] and Alcubierre et al. [79].

10.3.2 Minimal Distortion

A very well motivated choice of spatial coordinates has been introduced in 1978 by
Smarr and York [1, 43] (see also Ref. [2]). As discussed in Sect. 7.1, the physical
degrees of freedom of the gravitational field are carried by the conformal 3-metric
γ . The evolution of the latter with respect to the coordinates (t, xi) is given by the
derivative ˙̃γ := L∂ t γ̃ , the components of which are

˙̃γ ij = ∂γ̃ij

∂t
. (10.31)

Given a foliation (Σt)t∈R, the idea of Smarr and York is to choose the coordinates
(xi), and hence the vector ∂ t, in order to minimize this time derivative. There is
not a unique way to minimize ˙̃γij; this can be realized by counting the degrees of
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Fig. 10.5 Distortion of a
spatial domain defined by
fixed values of the
coordinates (xi)

freedom: ˙̃γij has 5 independent components1 and, for a given foliation, only 3 degrees
of freedom can be controlled via the 3 coordinates (xi). One then proceeds as follows.
First one notices that ˙̃γ is related to the distortion tensor Q, the latter being defined
as the trace-free part of the time derivative of the physical metric γ :

Q := L∂ t γ − 1

3

(
trγ L∂t γ

)
γ , (10.32)

or in components,

Qij = ∂γij

∂t
− 1

3
γ kl ∂γkl

∂t
γij. (10.33)

Q measures the change in shape from Σt to Σt+∂t of any spatial domain V which lies
at fixed values of the coordinates (xi) (the evolution of V is then along the vector ∂ t,

cf. Fig. 10.5). Thanks to the trace removal, Q does not take into account the change
of volume, but only the change in shape (shear). From the law (2.64) of variation of
a determinant,

γ kl ∂γkl

∂t
= ∂

∂t
ln γ = 12

∂

∂t
ln Ψ + ∂

∂t
ln f

︸ ︷︷ ︸
0

= 12
∂

∂t
ln Ψ,

where we have used the relation (7.15) between the determinant γ and the conformal
factor Ψ, as well as the property (7.7). Thus we may rewrite Eq. (10.33) as

Qij = ∂γij

∂t
− 4

∂

∂t
ln Ψ γij = ∂

∂t
(Ψ 4γ̃ij) − 4Ψ 3 ∂Ψ

∂t
γ̃ij = Ψ 4 ∂γ̃ij

∂t
.

Hence the relation between the distortion tensor and the time derivative of the con-
formal metric:

1 As a symmetric 3 × 3 matrix, ˙̃γij has a priori six components, but one degree of freedom is lost
in the demand det γ̃ij = det fij [Eq. (7.18)], which implies det ˙̃γij = 0 via Eq. (7.7).
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Q = Ψ 4 ˙̃γ . (10.34)

The rough idea would be to choose the coordinates (xi) in order to minimize Q. Taking
into account that it is symmetric and traceless, Q has 5 independent components.
Thus it cannot be set identically to zero since we have only 3 degrees of freedom
in the choice of the coordinates (xi). To select which part of Q to set to zero, let us
decompose it into a longitudinal part and a TT part, in a manner similar to Eq. (9.9):

Qij = (LX)ij + QTT
ij . (10.35)

LX denotes the conformal Killing operator associated with the metric γ and acting
on some vector field X (cf. Appendix A)2:

(LX)ij := DiXj + DjXi − 2

3
DkXkγij (10.36)

and QTT
ij is both traceless and transverse (i.e. divergence-free) with respect to the

metric γ : DjQTT
ij = 0. X is then related to the divergence of Q by Dj(LX)ij = DjQij.

It is legitimate to relate the TT part to the dynamics of the gravitational field and
to attribute the longitudinal part to the change in γij which arises because of the
variation of coordinates from Σt to Σt+δt . This longitudinal part has 3 degrees of
freedom (the three components of the vector X) and we might set it to zero by some
judicious choice of the coordinates (xi). The minimal distortion coordinates are
thus defined by the requirement X = 0 or

Qij = QTT
ij , (10.37)

i.e.

D jQij = 0 . (10.38)

Let us now express Q in terms of the shift vector to turn the above condition into an
equation for the evolution of spatial coordinates. By means of Eqs. (5.68) and (6.65),
Eq. (10.33) becomes

Qij = −2NKij + Lβγij − 1

3

(
−2NK + 2Dkβ

k
)

γij,

i.e. (since Lβγij = Diβj + Djβi)

Qij = −2NAij + (Lβ)ij, (10.39)

where we let appear the trace-free part A of the extrinsic curvature K [Eq. (7.46)].
If we insert this expression into the minimal distortion requirement (10.38), we get

2 In Sect. 7.6, we have also used the notation L for the conformal Killing operator associated with
the flat metric f, but no confusion should arise in the present context.
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−2NDjA
ij − 2AijDjN + Dj(Lβ)ij = 0.

Let us then use the momentum constraint (5.71) to express the divergence of A as

DjA
ij = 8πpi + 2

3
DiK .

Besides, we recognize in Dj(Lβ)ij the conformal vector Laplacian associated with
the metric γ , so that we can write [cf. Eq. (A.8)]

Dj(Lβ)ij = DjD
jβ i + 1

3
DiDjβ

j + Ri
jβ

j,

where R is the Ricci tensor associated with γ . Thus we arrive at

DjD
jβ i + 1

3
DiDjβ

j + Ri
j β j = 16πNpi + 4

3
NDiK + 2AijDjN . (10.40)

This is the elliptic equation on the shift vector that one has to solve in order to enforce
minimal distortion.

Remark 10.7 For a constant mean curvature (CMC) slicing, and in particular for a
maximal slicing, the term DiK vanishes and the above equation is slightly simplified.
Incidentally, this is the form originally derived by Smarr and York (Eq. (3.27) in
Ref. [43]).

Another way to introduce minimal distortion amounts to minimizing the integral

S =
∫

Σt

QijQ
ij√γ d3x (10.41)

with respect to the shift vector β, keeping the slicing fixed (i.e. fixing γ , K and N).
Indeed, if we replace Q by its expression (10.39), we get

S =
∫

Σt

[
4N2AijA

ij − 4NAij(Lβ)ij + (Lβ)ij(Lβ)ij
] √

γ d3x. (10.42)

At fixed values of γ , K and N, δN = 0, δAij = 0 and δ(Lβ)ij = (Lδβ)ij, so that the
variation of S with respect to β is

δS =
∫
Σt

[
−4NAij(Lδβ)ij + 2(Lβ)ij(Lδβ)ij

]√
γ d3x = 2

∫
Σt

Qij(Lδβ)ij√γ d3x.

Now, since Q is symmetric and traceless, Qij(Lδβ)ij = Qij(Diδβ j + Djδβ i −
2/3Dkδβ

kγ ij) = Qij(Diδβ j + Djδβ i) = 2QijDiδβ j. Hence

δS = 4
∫

Σt

QijD
iδβ j√γ d3x

= 4
∫

Σt

[
Di

(
Qijδβ

j
)

− DiQijδβ
j
] √

γ d3x

= 4
∮

∂Σt

Qijδβ
jsi√q d2y − 4

∫
Σt

DiQijδβ
j√γ d3x
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Assuming that δβ i = 0 at the boundaries of Σt (for instance at spatial infinity), we
deduce from the above relation that δS = 0 for any variation of the shift vector if
and only if DiQij = 0. Hence we recover condition (10.38).

In stationary spacetime, an important property of the minimal distortion gauge
is to be fulfilled by coordinates adapted to the stationarity (i.e. such that ∂ t is a
Killing vector): it is immediate from Eq. (10.32) that Q = 0 when ∂ t is a symmetry
generator, so that condition (10.38) is trivially satisfied. Another nice feature of the
minimal distortion gauge is that in the weak field region (radiative zone), it includes
the standard TT gauge of linearized gravity [43]. Actually Smarr and York [43] have
advocated for maximal slicing combined with minimal distortion as a very good
coordinate choice for radiative spacetimes, calling such choice the radiation gauge.

Remark 10.8 A “new minimal distortion” gauge has been introduced in 2006 by
Jantzen and York [80]. It corrects the time derivative of γ̃ in the original minimal
distortion condition by the lapse function N [cf. relation (4.17) between the coordinate
time t and the Eulerian observer’s proper time τ ], i.e. one requires

Dj
(

1

N
Qij

)
= 0 (10.43)

instead of (10.38). This amounts to minimizing the integral

S′ =
∫

Σt

(N−1Qij)(N
−1Qij)

√−g d3x (10.44)

with respect to the shift vector. Notice the spacetime measure
√−g = N

√
γ instead

of the spatial measure
√

γ in Eq. (10.41).

The minimal distortion condition can be expressed in terms of the time derivative
of the conformal metric by combining Eqs. (10.34) and (10.38):

Dj(Ψ 4 ˙̃γ ij) = 0 . (10.45)

Let us write this relation in terms of the connection D̃ (associated with the
metric γ̃ ) instead of the connection D (associated with the metric γ ). To this purpose,
let us use Eq. (7.66) which relates the D-divergence of a traceless symmetric tensor,
such as Qij, to its D̃-divergence:

DjQ
ij = Ψ −10D̃j

(
Ψ 10Qij

)
.

Now Qij = γ ikγ jlQkl = Ψ −8γ̃ ik γ̃ jlQkl = Ψ −4γ̃ ik γ̃ jl ˙̃γ kl; hence

DjQ
ij = Ψ −10D̃j

(
Ψ 6γ̃ ik γ̃ jl ˙̃γ kl

)
= Ψ −10γ̃ ikD̃l

(
Ψ 6 ˙̃γ kl

)
.

The minimal distortion condition is therefore

D̃j(Ψ 6 ˙̃γ ij) = 0 . (10.46)
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10.3.3 Approximate Minimal Distortion

In view of Eq. (10.46), it is natural to consider the simpler condition

D̃j ˙̃γ ij = 0, (10.47)

which of course differs from the true minimal distortion (10.46) by a term 6γ̇ijD̃j ln Ψ.

Nakamura (1994) [81, 82] has then introduced the pseudo-minimal distortion con-
dition by replacing (10.47) by

D̄ j ˙̃γ ij = 0 , (10.48)

where D̄ is the connection associated with the flat metric f .
An alternative has been introduced by Shibata (1999) [83] as follows. Starting

from Eq. (10.47), let us express ˙̃γ ij in terms of A and β: from Eq. (9.79), we deduce
that

2NÃij = γ̃ik γ̃jl

[ ˙̃γ kl + (L̃β)kl
]

= γ̃jl

[
∂

∂t
(γ̃ik γ̃

kl︸ ︷︷ ︸
δl

i

) − γ̃ kl ∂γ̃ik

∂t
+ γ̃ik(L̃β)kl

]

= − ˜̇γ ij + γ̃ik γ̃jl(L̃β)kl,

where Ãij := γ̃ik γ̃jlÃkl = Ψ −4Aij. Equation (10.47) becomes then

D̃j
[
γ̃ik γ̃jl(L̃β)kl − 2NÃij

]
= 0,

or equivalently (cf. Sect. A.2.1),

D̃jD̃
jβ i + 1

3
D̃iD̃jβ

j + R̃i
jβ

j − 2ÃijD̃jN − 2ND̃jÃ
ij = 0.

We can express D̃jÃij via the momentum constraint (7.93) and get

D̃jD̃
jβi + 1

3
D̃iD̃jβ

j + R̃i
jβ

j − 2ÃijD̃jN + 4N

[
3ÃijD̃j ln Ψ − 1

3
D̃iK − 4πΨ 4pi

]
= 0.

(10.49)
At this stage, Eq. (10.49) is nothing but a rewriting of Eq. (10.47) as an elliptic
equation for the shift vector. Shibata [83] then proposes to replace in this equation
the conformal vector Laplacian relative to γ̃ and acting on β by the conformal vector
Laplacian relative to the flat metric f, thereby writing

D̄jD̄
jβ i + 1

3
D̄iD̄jβ

j − 2ÃijD̃jN + 4N

[
3ÃijD̃j ln Ψ − 1

3
D̃iK − 4πΨ 4pi

]
= 0.

(10.50)
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The choice of coordinates defined by solving Eq. (10.50) instead of (10.40) is called
approximate minimal distortion.

The approximate minimal distortion has been used by Shibata and Uryu
[29, 30] for their first computations of the merger of binary neutron stars, as well
as by Shibata, Baumgarte and Shapiro for computing the collapse of supramassive
neutron stars at the mass-shedding limit (Keplerian angular velocity) [84] and for
studying the dynamical bar-mode instability in differentially rotating neutron stars
[85]. It has also been used by Shibata [34] to devise a 2D (axisymmetric) code to
compute the long-term evolution of rotating neutron stars and gravitational collapse.

10.3.4 Gamma Freezing

The Gamma freezing prescription for the evolution of spatial coordinates is very
much related to Nakamura’s pseudo-minimal distortion (10.48): it differs from it

only in the replacement of D̄j by D̄j and ˙̃γ ij by ˙̃γ ij := ∂γ̃ ij/∂t:

D̄j ˙̃γ ij = 0 . (10.51)

The name Gamma freezing is justified as follows: since ∂/∂t and D̄ commute
[as a consequence of (7.7)], Eq. (10.51) is equivalent to

∂

∂t

(
D̄jγ̃

ij
)

= 0. (10.52)

Now, expressing the covariant derivative D̄j in terms of the Christoffel symbols Γ̄ i
jk

of the metric f with respect to the coordinates (xi), we get

Djγ̃
ij = ∂γ̃ ij

∂xj
+ Γ̄ i

jk γ̄
kj + Γ̄ j

jk︸︷︷︸
1
2

∂

∂xk ln f

γ̃ ik

= ∂γ̃ ij

∂xj
+ Γ̃ i

jk γ̃
kj +

(
Γ̄ i

jk − Γ̃ i
jk

)
γ̃ kj + 1

2

∂

∂xk
ln γ̃

︸ ︷︷ ︸
Γ̃ j

jk

γ̃ ik

= ∂γ̃ ij

∂xj
+ Γ̃ i

jk γ̃
kj + Γ̃

j
jk γ̃

ik

︸ ︷︷ ︸
D̃j γ̃ ij=0

+
(
Γ̄ i

jk − Γ̃ i
jk

)
γ̃ kj

= γ̃ jk
(
Γ̄ i

jk − Γ̃ i
jk

)
,

where Γ̃ i
jk denote the Christoffel symbols of the metric γ̃ with respect to the coor-

dinates (xi) and we have used γ̃ = f [Eq. (7.18)] to write the second line. If we
introduce the notation
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Γ̃ i := γ̃ jk
(
Γ̃ i

jk − Γ̄ i
jk

)
, (10.53)

then the above relation becomes

D̄jγ̃
ij = −Γ̃ i . (10.54)

Remark 10.9 If one uses Cartesian-type coordinates, then Γ̄ i
jk = 0 and the Γ̃ i’s

reduce to the contracted Christoffel symbols introduced by Baumgarte and Shapiro
[78] [cf. their Eq. (21)]. In the present case, the Γ̃ i’s are the components of a vector
field Γ̃ on Σt, as it is clear from relation (10.54), or from expression (10.53) if one
remembers that, although the Christoffel symbols are not the components of any
tensor field, the differences between two sets of them are. Of course the vector field
Γ̃ depends on the choice of the background metric f .

By combining Eqs. (10.54) and (10.52), we see that the Gamma freezing condition
is equivalent to

∂Γ̃ i

∂t
= 0 , (10.55)

hence the name Gamma freezing: for such a choice, the vector Γ̃ does not evolve, in
the sense that L ∂ t Γ̃ = 0. The Gamma freezing prescription has been introduced by
Alcubierre and Brügmann in 2001 [86], in the form of Eq. (10.55).

Let us now derive the equation that the shift vector must obey in order to enforce
the Gamma freezing condition. If we express the Lie derivative in the evolution
equation (7.89) for γ̃ ij in terms of the covariant derivative D̄ [cf. Eq. (2.90)], we get

˙̃γ ij = 2NÃij + βkD̄k γ̃
ij − γ̃ kjD̄kβ

i − γ̃ ikD̄kβ
j + 2

3
D̄kβ

k γ̃ ij.

Taking the flat-divergence of this relation and using relation (10.54) (with the com-
mutation property of ∂/∂t and D̄) yields

∂Γ̃ i

∂t
== − 2ND̄jÃ

ij − 2AijD̄jN + βkD̄kΓ̃
i − Γ̃ kD̄kβ

i + 2

3
Γ̃ iD̄kβ

k

γ̃ jkD̄jD̄kβ
i + 1

3
γ̃ ijD̄jD̄kβ

k . (10.56)

Now, we may use the momentum constraint (7.93) to express D̄jÃij:

D̃jÃ
ij = −6ÃijD̃j ln Ψ + 2

3
D̃iK + 8πΨ 4pi,

with
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D̃jÃ
ij = D̄jÃ

ij +
(
Γ̃ i

jk − Γ̄ i
jk

)
Ãkj +

(
Γ̃

j
jk − Γ̄

j
jk

)
︸ ︷︷ ︸

0

Ãik,

where the “= 0” results from the fact that 2Γ̃
j
jk = ∂ ln γ̃ /∂xk and 2Γ̄

j
jk = ∂ ln f /∂xk,

with γ̃ := det γ̃ij = det fij =: f [Eq. (7.18)]. Thus Eq. (10.56) becomes

∂Γ̃ i

∂t
=γ̃ jkD̄jD̄kβ i + 1

3
γ̃ ijD̄jD̄kβk + 2

3
Γ̃ iD̄kβk − Γ̃ kD̄kβ i + βkD̄k Γ̃ i

− 2N

[
8πΨ 4pi − Ãjk

(
Γ̃ i

jk − Γ̄ i
jk

)
− 6ÃijD̄j ln Ψ + 2

3
γ̃ ijD̄jK

]
− 2ÃijD̄jN .

(10.57)
We conclude that the Gamma freezing condition (10.55) is equivalent to

γ̃ jkD̄jD̄kβ
i + 1

3 γ̃ ijD̄jD̄kβ
k + 2

3 Γ̃ iD̄kβ
k − Γ̃ kD̄kβ

i + βkD̄kΓ̃
i =

2N
[
8πΨ 4pi − Ãjk

(
Γ̃ i

jk − Γ̄ i
jk

)
− 6ÃijD̄j ln Ψ + 2

3 γ̃ ijD̄jK
]

+ 2ÃijD̄jN
.

(10.58)

This is an elliptic equation for the shift vector, which bears some resemblance with
Shibata’s approximate minimal distortion, Eq. (10.50).

10.3.5 Gamma Drivers

As seen above the Gamma freezing condition (10.55) yields to the elliptic equation
(10.58) for the shift vector. Alcubierre and Brügmann [86] have proposed to turn it
into a parabolic equation by considering, instead of Eq. (10.55), the relation

∂β i

∂t
= k

∂Γ̃ i

∂t
, (10.59)

where K is a positive function. The resulting coordinate choice is called a parabolic
Gamma driver. Indeed, if we inject Eq. (10.59) into Eq. (10.57), we clearly get
a parabolic equation for the shift vector, of the type ∂β i/∂t = k

[
γ̃ jkD̄jD̄kβ

i+
1
3 γ̃ ijD̄jD̄kβ

k + · · · ].
An alternative has been introduced in 2003 by Alcubierre et al. [87] (see also

Refs. [88] and [89]); it requires

∂2β i

∂t2 = k
∂Γ̃ i

∂t
−

(
η − ∂

∂t
ln k

)
∂β i

∂t
, (10.60)

where k and η are two positive functions. The prescription (10.60) is called a
hyperbolic Gamma driver [87–89]. Indeed, thanks to Eq. (10.57), it is equivalent
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to

∂2βi

∂t2
+

(
η − ∂

∂t
ln k

)
∂βi

∂t
= k

{
γ̃ jkD̄jD̄kβ i + 1

3
γ̃ ijD̄jD̄kβk + 2

3
Γ̃ iD̄kβk − Γ̃ kD̄kβ i

+ βkD̄k Γ̃ i − 2N

[
8πΨ 4pi − Ãjk

(
Γ̃ i

jk − Γ̄ i
jk

)
− 6ÃijD̄j ln Ψ + 2

3
γ̃ ijD̄jK

]

− 2ÃijD̄jN

}
, (10.61)

which is a hyperbolic equation for the shift vector, of the type of the telegrapher’s
equation. The term with the coefficient η is a dissipation term. It has been found by
Alcubierre et al. [87] crucial to add it in order to avoid strong oscillations in the shift.

The hyperbolic Gamma driver condition (10.60) is equivalent to the following
first order system

⎧⎪⎪⎨
⎪⎪⎩

∂β i

∂t
= kBi

∂Bi

∂t
= ∂Γ̃ i

∂t
−ηBi.

(10.62)

Remark 10.10 In the case where K does not depend on t, the Gamma driver condition
(10.60) reduces to a previous hyperbolic condition proposed by Alcubierre et al. [90],
namely

∂2β i

∂t2 = k
∂Γ̃ i

∂t
− η

∂β i

∂t
. (10.63)

Hyperbolic Gamma driver conditions have been employed in many numerical
computations:

• 3D gravitational collapse calculations by Baiotti et al. (2005, 2006) [70, 72], with
k = 3/4 and η = 3/M, where M is the ADM mass;

• the first evolution of a binary black hole system lasting for about one orbit by
Brügmann, Tichy and Jansen (2004) [91], with k = 3/4NΨ −2 and η = 2/M;

• binary black hole mergers by

– Campanelli et al. (2006) [59–62], with k = 3/4;
– Baker et al. (2006) [56, 57], with k = 3N/4 and a slightly modified version

of Eq. (10.62), namely ∂Γ̃ i/∂t replaced by ∂Γ̃ i/∂t − β j∂Γ̃ i/∂xj in the second
equation;

– Sperhake [63], with k = 1 and η = 1/M.

van Meter et al. [58] and Brügmann et al. [65] have considered a modified version
of Eq. (10.62), by replacing all the derivatives ∂/∂t by ∂/∂t − β j∂/∂xj, i.e. writing
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⎧⎪⎪⎨
⎪⎪⎩

∂β i

∂t
− β j ∂β i

∂xj
= kBi

∂Bi

∂t
− β j ∂Bi

∂xj
= ∂Γ̃ i

∂t
− β j ∂Γ̃ i

∂xj
− ηBi.

(10.64)

In particular, Brügmann et al. [65, 66] have computed binary black hole mergers
using (10.64) with k = 3/4 and η ranging from 0 to 3.5/M, whereas Herrmann
et al. [68] have used (10.64) with k = 3/4 and η = 2/M. The choice (10.64) has also
been used by Baiotti, Giacomazzo and Rezzolla [73, 74] to compute binary neutron
star mergers (with k = 3/4 and η = 1), as well as by Kyutoku et al. [76] for neutron
star - black hole mergers (with k = 3/4 and η equal to the ratio of a solar mass to
the irreducible mass of the black hole). Finally let us mention the recent work by
Alic et al. [92] which discuss the shortcomings of the Gamma driver for long-term
evolution of unequal-mass binary systems and propose some improvement to it.

10.3.6 Other Dynamical Shift Gauges

Shibata [35] has introduced a spatial gauge that is closely related to the hyperbolic
Gamma driver: it is defined by the requirement

∂β i

∂t
= γ̃ ij

(
Fj + δt

∂Fj

∂t

)
, (10.65)

where δt is the time step used in the numerical computation and3

Fi := D̄jγ̃ij. (10.66)

From the definition of the inverse metric γ̃ ij, namely the identity γ̃ ik γ̃kj = δi
j, and

relation (10.54), it is easy to show that Fi is related to Γ̃ i by

Fi = γ̃ijΓ̃
j −

(
γ̃ jk − f jk

)
D̄k γ̃ij. (10.67)

Notice that in the weak field region, i.e. where γ̃ ij = f ij + hij with fik fjlhklhij � 1,

the second term in Eq. (10.67) is of second order in h, so that at first order in h,

Eq. (10.67) reduces to Fi � γ̃ijΓ̃
j. Accordingly Shibata’s prescription (10.65)

becomes

∂β i

∂t
� Γ̃ i + γ̃ ijδt

∂Fj

∂t
. (10.68)

If we disregard the δt term in the right-hand side and take the time derivative of
this equation, we obtain the Gamma-driver condition (10.60) with k = 1 and η = 0.

3 Let us recall that D̄i := f ijD̄j .



10.3 Evolution of Spatial Coordinates 247

The term in δt has been introduced by Shibata [35] in order to stabilize the numerical
code.

The spatial gauge (10.65) has been used by Shibata [35] and Sekiguchi and
Shibata [36, 39] to compute axisymmetric gravitational collapse to back hole of
rapidly rotating neutron stars [36] and stellar cores [69], as well as by Shibata and
Sekiguchi [37] to compute 3D gravitational collapses, allowing for the development
of nonaxisymmetric instabilities. It has also been used by Shibata, Taniguchi and
Uryu [31, 32, 33] and Kiuchi, Sekiguchi, Shibata, and Taniguchi [75, 93] to compute
the merger of binary neutron stars, while their preceding computations [29, 30] rely
on the approximate minimal distortion gauge (Sect. 10.3.3).

10.4 Full Spatial Coordinate-Fixing Choices

The spatial coordinate choices discussed in Sect. 10.3, namely vanishing shift, mini-
mal distortion, Gamma freezing, Gamma driver and related prescriptions, are relative
to the propagation of the coordinates (xi) away from the initial hypersurface Σ0. They
do not restrict at all the choice of coordinates in Σ0. Here we discuss some coor-
dinate choices that fix completely the coordinate freedom, including in the initial
hypersurface.

10.4.1 Spatial Harmonic Coordinates

The first full coordinate-fixing choice we shall discuss is that of spatial harmonic
coordinates. They are defined by

DjD
jxi = 0 , (10.69)

in full analogy with the spacetime harmonic coordinates [cf. Eq. (10.16)]. The above
condition is equivalent to

1√
γ

∂

∂xj

(√
γ γ jk ∂xi

∂xk︸︷︷︸
δi

k

)
= 0,

i.e.

∂

∂xj

(√
γ γ ij

)
= 0. (10.70)

This relation restricts the coordinates to be of Cartesian type. Notably, it forbids
the use of spherical-type coordinates, even in flat space, for it is violated by γij =
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diag(1, r2, r2 sin2 θ). To allow for any type of coordinates, let us rewrite condition
(10.70) in terms of a background flat metric f (cf. discussion in Sect. 7.2.2), as

D̄j

[(
γ

f

)1/2

γ ij

]
= 0 , (10.71)

where D̄ is the connection associated with f and f := det fij is the determinant of f
with respect to the coordinates (xi).

Spatial harmonic coordinates have been considered by Čadež [94] for binary black
holes and by Andersson and Moncrief [95] in order to put the 3+1 Einstein system
into an elliptic-hyperbolic form and to show that the corresponding Cauchy problem
is well posed.

Remark 10.11 The spatial harmonic coordinates discussed above should not be con-
fused with spacetime harmonic coordinates; the latter would be defined by �	gxi = 0
[spatial part of Eq. (10.16)] instead of (10.69). Spacetime harmonic coordinates, as
well as some generalizations, are considered e.g. in Ref. [96].

10.4.2 Dirac Gauge

As a natural way to fix the coordinates in his Hamiltonian formulation of general
relativity (cf. Sect. 5.5), Dirac [97] has introduced in 1959 the following condition:

∂

∂xj

(
γ 1/3γ ij

)
= 0. (10.72)

It differs from the definition (10.70) of spatial harmonic coordinates only by the
power of the determinant γ. Similarly, we may rewrite it more covariantly in terms
of the background flat metric f as [25]

D̄j

[(
γ

f

)1/3

γ ij

]
= 0 . (10.73)

We recognize in this equation the inverse conformal metric [cf. Eqs. (7.15) and
(7.21)], so that we may write:

D̄jγ̃
ij = 0 . (10.74)

We call this condition the Dirac gauge. It has been first discussed in the context of
numerical relativity in 1978 by Smarr and York [43] but disregarded in profit of the
minimal distortion gauge (Sect. 10.3.2), for the latter leaves the freedom to choose
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the coordinates in the initial hypersurface. In terms of the vector Γ̃ introduced in
Sect. 10.3.4, the Dirac gauge has a simple expression, thanks to relation (10.54):

Γ̃ i = 0 . (10.75)

It is clear that if the coordinates (xi) obey the Dirac gauge at all times t, then they
belong to the Gamma freezing class discussed in Sect. 10.3.4, for
Eq. (10.75) implies Eq. (10.55). Accordingly, the shift vector of Dirac-gauge coordi-
nates has to satisfy the Gamma freezing elliptic equation (10.58), with the additional
simplification Γ̃ i = 0:

γ̃ jkD̄jD̄kβ i + 1

3
γ̃ ijD̄jD̄kβk =2N

[
8πΨ 4pi − Ãjk

(
Γ̃ i

jk − Γ̄ i
jk

)
− 6ÃijD̄j ln Ψ

+ 2

3
γ̃ ijD̄jK

]
+ 2ÃijD̄jN .

(10.76)

The Dirac gauge, along with maximal slicing, has been employed by Bonazzola
et al. [25] to devise a constrained scheme4 (see also [98, 99, 100]), which has been
applied to evolutions of gravitational waves in spacetimes with matter content [101].
It has also been used by Shibata, Uryu and Friedman [102] to formulate wave-
less approximations of general relativity that go beyond the IWM approximation
discussed in Sect. 7.6. Such a formulation has been employed to compute quasi-
equilibrium configurations of binary neutron stars [103, 104]. Since Dirac gauge is a
full coordinate-fixing gauge, the initial data must fulfill it. Recently, Lin and Novak
[105] have computed equilibrium configurations of rapidly rotating stars within the
Dirac gauge, which may serve as initial data for gravitational collapse.
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Chapter 11
Evolution Schemes

Abstract Various approaches to evolve forward in time the 3+1 Einstein equations
are discussed. After a review of constrained schemes, we focus on free evolution
schemes, giving some details about the propagation of the constraints. Among the
free evolution schemes, a particular important one is the BSSN scheme, which is
presented here in details.

11.1 Introduction

Even after having selected the foliation and the propagation of spatial coordinates
(Chap. 10), there remains various strategies to integrate the 3+1 Einstein equations,
either in their original form (5.68)–(5.71), or in the conformal form (7.88)–(7.93).
In particular, the constraint equations (5.70)–(5.71) or (7.92)–(7.93) may be solved
or not during the evolution, giving rise to respectively the so-called free evolution
schemes and the constrained schemes. We discuss here the two types of schemes
(Sects. 11.2 and 11.3), and present afterwards a widely used free evolution scheme:
the BSSN one (Sect. 11.4).

Some review articles on the subject are those by Stewart [1], Friedrich and Rendall
[2], Lehner [3], Shinkai and Yoneda [4, 5], Baumgarte and Shapiro [6], and Lehner
and Reula [7]. We also recommend the textbooks by Alcubierre [8] and Baumgarte
and Shapiro [9].

11.2 Constrained Schemes

A constrained scheme is a time scheme for integrating the 3+1 Einstein system in
which some (partially constrained scheme) or all (fully constrained scheme) of
the four constraints are used to compute some metric coefficients at each step of the
numerical evolution.

É. Gourgoulhon, 3+1 Formalism in General Relativity, Lecture Notes in Physics 846, 255
DOI: 10.1007/978-3-642-24525-1_11, © Springer-Verlag Berlin Heidelberg 2012



256 11 Evolution Schemes

In the eighties, partially constrained schemes, with only the Hamiltonian con-
straint enforced, have been widely used in 2-D (axisymmetric) computations (e.g.
Bardeen and Piran [10], Stark and Piran [11], Evans [12]). Still in the 2-D axisym-
metric case, fully constrained schemes have been used by Evans [13] and Shapiro and
Teukolsky [14] for non-rotating spacetimes, and by Abrahams, Cook, Shapiro and
Teukolsky [15] for rotating ones. More recently the axisymmetric codes of Choptuik,
Hirschmann, Liebling and Pretorius [16] and Rinne [17] are based on a constrained
scheme too.

Regarding 3D numerical relativity, a fully constrained scheme based on the orig-
inal 3+1 Einstein system (5.68)–(5.71) has been used to evolve a single black hole
by Anderson and Matzner [18]. Another fully constrained scheme has been devised
by Bonazzola, Gourgoulhon, Grandclément and Novak [19], but this time for the
conformal 3+1 Einstein system (7.88)–(7.93). It makes use of maximal slicing and
Dirac gauge (Sect. 10.4.2). This scheme has been improved by Cordero-Carrión et al.
[20] to fix a non-uniqueness issue similar to the XCTS one discussed in Sect. 9.3.4.
A mathematical analysis of this scheme has been performed in Ref. [21] and some
applications are presented in Refs. [19–22, 23].

11.3 Free Evolution Schemes

11.3.1 Definition and Framework

A free evolution scheme is a time scheme for integrating the 3+1 Einstein system in
which the constraint equations are solved only to get the initial data, e.g. by following
one of the prescriptions discussed in Chap. 9. The subsequent evolution is performed
via the dynamical equations only, without enforcing the constraints. Actually, facing
the 3+1 Einstein system (5.68)–(5.71), we realize that the dynamical equation (5.69),
coupled with the kinematic relation (5.68) and some choices for the lapse function
and shift vector (as discussed in Chap. 10), is sufficient to get the values of γ , K, N
and β at all times t, from which we can reconstruct the full spacetime metric g.

A natural question which arises then is: to which extent does the metric g hence
obtained fulfill the Einstein equation (5.1)? The dynamical part, Eq. (5.69), is fulfilled
by construction, but what about the constraints (5.70) and (5.71)? If they were violated
by the solution (γ , K) of the dynamical equation, then the obtained metric g would
not satisfy Einstein equation. The key point is that, as we shall see in Sect. 11.3.2,
provided that the constraints are satisfied at t = 0, the dynamical equation (5.69)
ensures that they are satisfied for all t > 0.
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11.3.2 Propagation of the Constraints

Let us derive evolution equations for the constraints, or more precisely, for the con-
straint violations. These evolution equations will be consequences of the Bianchi
identities.1 We denote by G the Einstein tensor [cf. Eq. (2.80)]

G := 4R − 1

2
4Rg, (11.1)

so that the Einstein equation (5.1) is written

G = 8πT. (11.2)

The Hamiltonian constraint violation is the scalar field defined by

H := G(n, n) − 8πT(n, n) , (11.3)

i.e.

H = 4R(n, n) + 1

2
4R − 8πE, (11.4)

where we have used the relations g(n, n) = −1 and T(n, n) = E [Eq. (5.4)]. Thanks
to the scalar Gauss equation (3.75) we may write

H = 1

2

(
R + K2 − KijKij

) − 8πE . (11.5)

Similarly we define the momentum constraint violation as the 1-form field

M := −G(n,
−→
γ (.)) + 8πT(n,

−→
γ (.)) . (11.6)

By means of the contracted Codazzi equation (3.82) and the relation T(n,
−→
γ (.)) =

−p [Eq. (5.5)], we get

Mi = DjKj
i − DiK − 8πpi , (11.7)

From the above expressions, we see that the Hamiltonian constraint (5.70) and the
momentum constraint (5.71) are equivalent to respectively

H = 0 (11.8)

Mi = 0. (11.9)

1 The following computation is inspired from Frittelli’s article [24].
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Finally we define the dynamical equation violation as the spatial tensor field

F := −→
γ

∗4R − 8π
−→
γ

∗
(

T − 1

2
Tg

)
. (11.10)

Indeed, let us recall that the dynamical part of the 3+1 Einstein system, Eq. (5.69)
is nothing but the spatial projection of the Einstein equation written in terms of
the Ricci tensor 4R, i.e. Eq. (5.2), instead of the Einstein tensor, i.e. Eq. (11.2) (cf.
Sect. 5.1.3). Introducing the stress tensor S = −→

γ
∗
T [Eq. Sect. 5.11] and using the

relations T = S − E [Eq. (5.15)] and −→
γ

∗
g = γ , we can write F as

F = −→
γ

∗4R − 8π

[
S + 1

2
(E − S)γ

]
. (11.11)

From Eq. (5.16), we see that the dynamical part of Einstein equation is equivalent to

F = 0. (11.12)

This is also clear if we replace −→
γ

∗4R in Eq. (11.11) by the expression (4.43): we
immediately get Eq. (5.69).

Let us express −→
γ

∗
(G − 8πT) in terms of F. Using Eq. (11.1), we have

−→
γ

∗
(G − 8πT) = −→

γ
∗4R − 1

2
4Rγ − 8πS.

Comparing with Eq. (11.11), we get

−→
γ

∗
(G − 8πT) = F − 1

2

[
4R + 8π(S − E)

]
γ . (11.13)

Besides, the trace of Eq. (11.11) is

F = trγ F = γ ijFij = γ μvFμv

= γ μvγ ρ
μ︸ ︷︷ ︸

γ ρv

γ σ
v

4Rρσ − 8π

[
S + 1

2
(E − S) × 3

]

= γ ρσ 4Rρσ + 4π(S − 3E) = 4R + 4Rρσ nρnσ + 4π(S − 3E).

Now, from Eq. (11.4), 4Rρσ nρnσ = H − 4R/2 + 8πE, so that the above relation
becomes

F = 4R + H − 1

2
4R + 8πE + 4π(S − 3E) = H + 1

2

[
4R + 8π(S − E)

]
.

This enables us to write Eq. (11.13) as

−→
γ

∗
(G − 8πT) = F + (H − F)γ . (11.14)
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Similarly to the 3+1 decomposition (5.14) of the stress–energy tensor, the 3+1
decomposition of G − 8πT is

G − 8πT = −→
γ

∗
(G − 8πT) + n− ⊗ M + M ⊗ n− + Hn− ⊗ n−,

−→
γ

∗
(G − 8πT) playing the role of S, M that of p and H that of E. Thanks to

Eq. (11.14), we may write

G − 8πT = F + (H − F)γ + n− ⊗ M + M ⊗ n− + Hn− ⊗ n− , (11.15)

or, in index notation,

Gαβ − 8πTαβ = Fαβ + (H − F)γαβ + nαMβ + Mαnβ + Hnαnβ. (11.16)

This identity can be viewed as the 3+1 decomposition of Einstein equation (11.2) in
terms of the dynamical equation violation F, the Hamiltonian constraint violation H
and the momentum constraint violation M.

The next step consists in invoking the contracted Bianchi identity (2.79):

∇ · −→
G = 0 , (11.17)

i.e. ∇μGμ
α = 0 [cf. Eqs. (2.39) and (2.58)]. Let us recall that this identity is purely

geometrical and holds independently of Einstein equation. In addition, we assume
that the matter obeys the energy-momentum conservation law (6.1):

∇ · −→
T = 0 . (11.18)

In view of the Bianchi identity (11.17), Eq. (11.18) is a necessary condition for the
Einstein equation (11.2) to hold.

Remark 11.1 We assume here specifically that Eq. (11.18) holds, because in the
following we do not demand that the whole Einstein equation is satisfied, but only
its dynamical part, i.e. Eq. (11.12).

As we have seen in Chap. 6, in order for Eq. (11.18) to be satisfied, the matter energy
density E and momentum density p (both relative to the Eulerian observer) must
obey to the evolution equations (6.10) and (6.20).

Thanks to the Bianchi identity (11.17) and to the energy-momentum conservation
law (11.18), the divergence of Eq. (11.15) leads to, successively,

∇μ

(
Gμ

α − 8πTμ
α

) = 0

∇μ

[
Fμ

α + (H − F)γ μ
α + nμMα + Mμnα + Hnμnα

] = 0,

∇μFμ
α + Dα(H − F) + (H − F)

(∇μnμnα + nμ∇μnα

) − KMα + nμ∇μMα

+ ∇μMμnα − MμKμα + nμ∇μHnα − HKnα + HDα ln N = 0,

∇μFμ
α + Dα(H − F) + (2H − F)(Dα ln N − Knα) − KMα + nμ∇μMα,

+ ∇μMμnα − KαμMμ + nμ∇μHnα = 0, (11.19)
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where we have used Eq. (4.24) to express the ∇n− in terms of K and D ln N (in

particular ∇μnμ = −K). Let us contract Eq. (11.19) with n : we get, successively,

nv∇μFμ
v + (2H − F)K + nvnμ∇μMv − ∇μMμ − nμ∇μH = 0,

− Fμ
v∇μnv + (2H − F)K − Mvnμ∇μnv − ∇μMμ − nμ∇μH = 0,

KμvFμv + (2H − F)K − MvDv ln N − ∇μMμ − nμ∇μH = 0. (11.20)

Now the ∇-divergence of M is related to the D-one by Eq. (6.6): ∇μMμ = DμMμ +
MμDμ ln N . Hence Eq. (11.20) can be written

nμ∇μH = −DμMμ − 2MμDμ ln N + K(2H − F) + KμvFμv.

Noticing that

nμ∇μH = 1

N
mμ∇μH = 1

N
LmH = 1

N

(
∂

∂t
− Lβ

)
H, (11.21)

where m is the normal evolution vector (cf. Sect. 4.3.2), we get the following evolution
equation for the Hamiltonian constraint violation

(
∂

∂t
− Lβ

)
H = −Di(NMi) − MiDiN + NK(2H − F) + NKijFij . (11.22)

Let us now project Eq. (11.19) onto Σt :
γ vα∇μFμ

v +Dα(H −F)+(2H −F)Dα ln N −KMα +γ α
vnμ∇μMv −Kα

μMμ = 0.

(11.23)
Now the ∇-divergence of F is related to the D-one by

DμFμα = γ ρ
μγ μ

σ γ vα∇ρFσ
v = γ ρ

σ γ vα∇ρFσ
v = γ vα (∇ρFρ

v + nρnσ ∇ρFσ
v
)

= γ vα (∇ρFρ
v − Fσ

vnρ∇ρnσ

)

= γ vα∇μFμ
v − FαμDμ ln N . (11.24)

Besides, we have

γ α
vnμ∇μMv = 1

N
γ α

vmμ∇μMv = 1

N
γ α

v

(
LmMv + Mμ∇μmv)

= 1

N

[
LmMα + γ α

vMμ(∇μNnv + N∇μnv)
]

= 1

N
LmMα − Kα

μMμ, (11.25)

where property (4.36) has been used to write γ α
vLmMv = LmMα.

Thanks to Eqs. (11.24) and (11.25), and to the relation Lm = ∂/∂t − Lβ ,

Eq. (11.23) yields an evolution equation for the momentum constraint violation:
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(
∂

∂t
− Lβ

)
Mi = −Dj(NFij) + 2NKi

jMj + NKMi + NDi(F − H) + (F − 2H)DiN .

(11.26)
Let us now assume that the dynamical Einstein equation is satisfied, then F = 0

[Eq. (11.12)] and Eqs. (11.22) and (11.26) reduce to

(
∂

∂t
− Lβ

)
H = −Di(NMi) + 2NKH − MiDiN (11.27)

(
∂

∂t
− Lβ

)
Mi = −Di(NH) + 2NKi

jM
j + NKMi − HDiN . (11.28)

If the constraints are satisfied at t = 0, then H|t = 0 = 0 and Mi|t = 0 = 0. The above
system gives then

∂H

∂t

∣∣∣∣
t = 0

= 0 (11.29)

∂Mi

∂t

∣
∣∣∣
t = 0

= 0. (11.30)

We conclude that, at least in the case where all the fields are analytical (in order to
invoke the Cauchy–Kovalevskaya theorem),

∀t ≥ 0, H = 0 and Mi = 0, (11.31)

i.e. the constraints are preserved by the dynamical evolution equation (5.69). Even
if the hypothesis of analyticity is relaxed, the result still holds because the system
(11.27)–(11.28) is symmetric hyperbolic [24].

Remark 11.2 The above result on the preservation of the constraints in a free evolu-
tion scheme holds only if the matter source obeys the energy-momentum conservation
law (11.18).

11.3.3 Constraint-Violating Modes

The constraint preservation property established in the preceding section adds some
substantial support to the concept of free evolution scheme. However this is a math-
ematical result and it does not guarantee that numerical solutions will not violate
the constraints. Indeed numerical codes based on free evolution schemes have been
plagued for a long time by the so-called constraint violating modes. The latter are
solutions (γ , K, N,β) which satisfy F = 0 up to numerical accuracy but with H �= 0
and M �= 0, even though initially H = 0 and M = 0 (up to numerical accuracy).
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The reasons for the appearance of these constraint-violating modes are twofold: (i)
due to numerical errors, the conditions H = 0 and M = 0 are slightly violated in the
initial data, and the evolution equations amplify this violation (in most cases expo-
nentially !) and (ii) constraint violations may flow into the computational domain
from boundary conditions imposed at timelike boundaries. Notice that the demon-
stration in Sect. 11.3.2 did not take into account any boundary and could not rule out
(ii).

An impressive amount of works have then been devoted to this issue (see [4] for a
review and Ref. [25, 26] for recent solutions to problem (ii)). We mention hereafter
shortly the symmetric hyperbolic formulations, before discussing the most successful
approach to date: the BSSN scheme.

11.3.4 Symmetric Hyperbolic Formulations

The idea is to introduce auxiliary variables so that the dynamical equations become
a first-order symmetric hyperbolic system, because these systems are known to be
well posed (see e.g. [1, 27]). This comprises the formulation developed in 2001
by Kidder et al. [28] (KST formulation), which constitutes some generalization of
previous formulations developed by Frittelli and Reula [29] and by Andersson and
York [30], the latter being known as the Einstein–Christoffel system.

11.4 BSSN Scheme

11.4.1 Introduction

The BSSN scheme is a free evolution scheme for the conformal 3+1 Einstein system
(7.88)–(7.93) which has been devised by Shibata and Nakamura in 1995 [31]. It has
been re-analyzed by Baumgarte and Shapiro in 1999 [32], with a slight modification,
and bears since then the name BSSN for Baumgarte–Shapiro–Shibata–Nakamura.

11.4.2 Expression of the Ricci Tensor of the Conformal Metric

The starting point of the BSSN formulation is the conformal 3+1 Einstein system
(7.88)–(7.93). One then proceeds by expressing the Ricci tensor R̃ of the conformal
metric γ̃ , which appears in Eq. (7.91), in terms of the derivatives of γ̃ . To this aim,
we consider the expression of the Ricci tensor in terms of the Christoffel symbols
Γ̃ k

ij of the metric γ̃ with respect to the coordinates (xi) [cf. Eqs. (2.69) and (2.76)]:

R̃ij = ∂

∂xk
Γ̃ k

ij − ∂

∂xj
Γ̃ k

ik + Γ̃ k
ijΓ̃ l

kl − Γ̃ k
ilΓ̃ l

kj. (11.32)
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Let us introduce the type (1,2) tensor field Δ defined by

Δk
ij := Γ̃ k

ij − Γ̄ k
ij , (11.33)

where the Γ̄ k
ij’s denote the Christoffel symbols of the flat metric f with respect to the

coordinates (xi). As already noticed in Sect. 10.3.4, the identity (11.33) does define
a tensor field, although each set of Christoffel symbols, Γ̃ k

ij or Γ̄ k
ij, is by no means

the set of components of any tensor field. Actually an alternative expression of Δk
ij,

which is manifestly covariant, is

Δk
ij = 1

2 γ̃ kl
(
D̄iγ̃lj + D̄jγ̃il − D̄lγ̃ij

)
, (11.34)

where D̄i stands for the covariant derivative associated with the flat metric f . It is
not difficult to establish the equivalence of Eqs. (11.33) and (11.34): starting from
the latter, we have

Δk
ij = 1

2
γ̃ kl

(
∂γ̃lj

∂xi
− Γ̄ m

ilγ̃mj − Γ̄ m
ijγ̃lm + ∂γ̃il

∂xj
− Γ̄ m

jiγ̃ml − Γ̄ m
jlγ̃im

− ∂γ̃ij

∂xl
+ Γ̄ m

liγ̃mj + Γ̄ m
ljγ̃im

)

= Γ̃ k
ij + 1

2
γ̃ kl

(
−2Γ̄ m

ijγ̃lm

)
= Γ̃ k

ij − γ̃ klγ̃lm︸ ︷︷ ︸
δk

m

Γ̄ m
ij

= Γ̃ k
ij − Γ̄ k

ij.

Remark 11.3 While it is a well defined tensor field, Δ depends upon the background
flat metric f , which is not unique on the hypersurface Σt .

A useful property is obtained by contracting Eq. (11.33) on the indices k and j:

Δk
ik = Γ̃ k

ik − Γ̄ k
ik = 1

2

∂

∂xi
ln γ̃ − 1

2

∂

∂xi
ln f ,

where γ̃ := det γ̃ij and f := det fij. Since by construction γ̃ = f [Eq. (7.18)], we get

Δk
ik = 0 . (11.35)

Remark 11.4 If the coordinates (xi) are of Cartesian type, then Γ̄ k
ij = 0, Δk

ij = Γ̃ k
ij

and D̄i = ∂/∂xi. This is actually the case considered in the original articles of the
BSSN formalism [31, 32]. We follow here the method of Ref. [19] to allow for non
Cartesian coordinates, e.g. spherical ones.

Replacing Γ̃ k
ij by Δk

ij + Γ̄ k
ij [Eq. (11.33)] in the expression (11.32) of the Ricci

tensor yields
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R̃ij = ∂

∂xk
(Δk

ij + Γ̄ k
ij) − ∂

∂xj
(Δk

ik + Γ̄ k
ik) + (Δk

ij + Γ̄ k
ij)(Δ

l
kl + Γ̄ l

kl)

− (Δk
il + Γ̄ k

il)(Δ
l
kj + Γ̄ l

kj)

= ∂

∂xk
Δk

ij + ∂

∂xk
Γ̄ k

ij − ∂

∂xj
Δk

ik − ∂

∂xj
Γ̄ k

ik + Δk
ijΔ

l
kl + Γ̄ l

klΔ
k

ij

+ Γ̄ k
ijΔ

l
kl + Γ̄ k

ijΓ̄
l
kl − Δk

ilΔ
l
kj − Γ̄ l

kjΔ
k

il − Γ̄ k
ilΔ

l
kj

− Γ̄ k
ilΓ̄

l
kj. (11.36)

Now since the metric f is flat, its Ricci tensor vanishes identically, so that

∂

∂xk
Γ̄ k

ij − ∂

∂xj
Γ̄ k

ik + Γ̄ k
ijΓ̄

l
kl − Γ̄ k

ilΓ̄
l
kj = 0.

Hence Eq. (11.36) reduces to

R̃ij = ∂

∂xk
Δk

ij − ∂

∂xj
Δk

ik + Δk
ijΔ

l
kl + Γ̄ l

klΔ
k

ij + Γ̄ k
ijΔ

l
kl − Δk

ilΔ
l
kj

− Γ̄ l
kjΔ

k
il − Γ̄ k

ilΔ
l
kj.

Property (11.35) enables us to simplify this expression further:

R̃ij = ∂

∂xk
Δk

ij + Γ̄ l
klΔ

k
ij − Γ̄ l

kjΔ
k

il − Γ̄ k
ilΔ

l
kj − Δk

ilΔ
l
kj

= ∂

∂xk
Δk

ij + Γ̄ k
klΔ

l
ij − Γ̄ l

kiΔ
k

lj − Γ̄ l
kjΔ

k
il − Δk

ilΔ
l
kj.

We recognize in the first four terms of the right-hand side the covariant derivative
D̄kΔ

k
ij, hence

R̃ij = D̄kΔ
k

ij − Δk
ilΔ

l
kj. (11.37)

Remark 11.5 Even if Δk
ik would not vanish, we would have obtained an expression

of the Ricci tensor with exactly the same structure as Eq. (11.32), with the partial
derivatives ∂/∂xi replaced by the covariant derivatives D̄i and the Christoffel symbols
Γ̃ k

ij replaced by the tensor components Δk
ij. Indeed Eq. (11.37) can be seen as being

nothing but a particular case of the more general formula obtained in Sect. 7.3.1 and
relating the Ricci tensors associated with two different metrics, namely Eq. (7.40).
Performing in the latter the substitutions γ → γ̃ , γ̃ → f , Rij → R̃ij, R̃ij → 0 (for
f is flat), D̃i → D̄i and Ck

ij → Δk
ij [compare Eqs. (7.29) and (11.33)] and using

property (11.35), we get immediately Eq. (11.37).

If we substitute expression (11.34) for Δk
ij into Eq. (11.37), we get
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R̃ij = 1

2
D̄k

[
γ̃ kl (

D̄iγ̃lj + D̄j γ̃il − D̄l γ̃ij
)] − Δk

ilΔ
l
kj

= 1

2

{
D̄k

[
D̄i(γ̃

kl γ̃lj
︸ ︷︷ ︸

δk
j

) − γ̃ljD̄iγ̃
kl + D̄j(γ̃

kl γ̃il︸ ︷︷ ︸
δk

i

) − γ̃ilD̄j γ̃
kl

]
− D̄k γ̃ klD̄l γ̃ij

− γ̃ klD̄kD̄l γ̃ij

}
− Δk

ilΔ
l
kj

= 1

2

(
− D̄k γ̃ljD̄iγ̃

kl − γ̃ljD̄kD̄iγ̃
kl − D̄k γ̃ilD̄j γ̃

kl − γ̃ilD̄kD̄j γ̃
kl − D̄k γ̃ klD̄l γ̃ij

− γ̃ klD̄kD̄l γ̃ij

)
− Δk

ilΔ
l
kj.

Hence we can write, using D̄kD̄i = D̄iD̄k (since f is flat) and exchanging some
indices k and l,

R̃ij = − 1
2

(
γ̃ klD̄kD̄lγ̃ij + γ̃ikD̄jD̄lγ̃

kl + γ̃jkD̄iD̄lγ̃
kl
) + Qij(γ̃ , D̄γ̃ ) , (11.38)

where

Qij(γ̃ , D̄γ̃ ) := −1

2

(
D̄k γ̃ljD̄iγ̃

kl + D̄k γ̃ilD̄j γ̃
kl + D̄k γ̃ klD̄l γ̃ij

)
− Δk

ilΔ
l
kj (11.39)

is a term which does not contain any second derivative of γ̃ and which is quadratic
in the first derivatives.

11.4.3 Reducing the Ricci Tensor to a Laplace Operator

If we consider the Ricci tensor as a differential operator acting on the conformal
metric γ̃ , its principal part (or principal symbol, cf. Sec. A.2.2) is given by the
three terms involving second derivatives in the right-hand side of Eq. (11.38). We
recognize in the first term, γ̃ klD̄kD̄lγ̃ij, a kind of Laplace operator acting on γ̃ij.

Actually, for a weak gravitational field, i.e. for γ̃ ij = f ij + hij with fik fjlhklhij 	 1,

we have, at the linear order in h, γ̃ klD̄kD̄lγ̃ij 
 Δf γ̃ij, where Δf = f klD̄kD̄l is the
Laplace operator associated with the metric f . If we combine Eqs. (7.89) and (7.91),
the Laplace operator in R̃ij gives rise to a wave operator for γ̃ij, namely

[(
∂

∂t
− Lβ

)2

− N2

Ψ 4 γ̃ klD̄kD̄l

]

γ̃ij = · · ·

Unfortunately the other two terms that involve second derivatives in Eq. (11.38),
namely γ̃ikD̄jD̄lγ̃

kl and γ̃jkD̄iD̄lγ̃
kl, spoil the elliptic character of the operator acting

on γ̃ij in R̃ij, so that the combination of Eqs. (7.89) and (7.91) does no longer lead to
a wave operator.
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To restore the Laplace operator, Shibata and Nakamura [31] have considered the
term D̄lγ̃

kl which appears in the second and third terms of Eq. (11.38) as a variable
independent from γ̃ij. We recognize in this term the opposite of the vector Γ̃ that has
been introduced in Sect. 10.3.4 [cf. Eq. (10.54)]:

Γ̃ i = −D̄jγ̃
ij . (11.40)

Equation (11.38) then becomes

R̃ij = 1
2

(
−γ̃ klD̄kD̄lγ̃ij + γ̃ikD̄jΓ̃

k + γ̃jkD̄iΓ̃
k
)

+ Qij(γ̃ , D̄γ̃ ) . (11.41)

Remark 11.6 Actually, Shibata and Nakamura [31] have introduced the covector
Fi := D̄jγ̃ij instead of Γ̃ i. As Eq. (10.67) shows, the two quantities are closely related.
They are even equivalent in the linear regime. The quantity Γ̃ i has been introduced
by Baumgarte and Shapiro [32]. It has the advantage over Fi to encompass all the
second derivatives of γ̃ij that are not part of the Laplacian. If one use Fi, this is true
only at the linear order (weak field region). Indeed, by means of Eq. (10.67), we can
write

R̃ij = 1

2

(
−γ̃ klD̄kD̄l γ̃ij + D̄jFi + D̄iFj + hklD̄iD̄k γ̃jl + hklD̄iD̄k γ̃jl

)
+ Q′

ij(γ̃ , D̄γ̃ ),

where hkl := γ̃ kl − f kl. When compared with (11.41), the above expression contains
the additional terms hklD̄iD̄k γ̃jl and hklD̄iD̄k γ̃jl, which are quadratic in the deviation
of γ̃ from the flat metric.

The Ricci scalar R̃, which appears along R̃ij in Eq. (7.91), is deduced from the
trace of Eq. (11.41):

R̃ = γ̃ ijR̃ij = 1

2

(
− γ̃ kl γ̃ ijD̄kD̄l γ̃ij + γ̃ ij γ̃ik︸ ︷︷ ︸

δj
k

D̄jΓ̃
k + γ̃ ij γ̃jk

︸ ︷︷ ︸
δi

k

D̄iΓ̃
k
)

+ γ̃ ijQij(γ̃ , D̄γ̃ )

= 1

2

[
−γ̃ klD̄k

(
γ̃ ijD̄l γ̃ij

)
+ γ̃ klD̄k γ̃ ijD̄l γ̃ij + 2D̄k Γ̃ k

]
+ γ̃ ijQij(γ̃ , D̄γ̃ ).

Now, from Eq. (11.34), γ̃ ijD̄lγ̃ij = 2Δk
lk, and from Eq. (11.35), Δk

lk = 0. Thus
the first term in the right-hand side of the above equation vanishes and we get

R̃ = D̄kΓ̃
k + Q(γ̃ , D̄γ̃ ) , (11.42)

where

Q(γ̃ , D̄γ̃ ) := 1

2
γ̃ klD̄k γ̃

ijD̄lγ̃ij + γ̃ ijQij(γ̃ , D̄γ̃ ) (11.43)

is a term that does not contain any second derivative of γ̃ and is quadratic in the first
derivatives.
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The idea of introducing auxiliary variables, such as Γ̃ i or Fi, to reduce the Ricci
tensor to a Laplace-like operator traces back to Nakamura, Oohara and Kojima [33].
In that work, such a treatment was performed for the Ricci tensor R of the physical
metric γ , whereas in Shibata and Nakamura’s study [31], it was done for the Ricci
tensor R̃ of the conformal metric γ̃ . The same considerations had been put forward
much earlier for the four-dimensional Ricci tensor 4R. Indeed, this is the main moti-
vation for the harmonic coordinates mentioned in Sect. 10.2.3: in 1921 de Donder
[34] introduced these coordinates in order to write the principal part of the Ricci
tensor as a wave operator acting on the metric coefficients gαβ :

4Rαβ = −1

2
gμv ∂

∂xμ

∂

∂xv
gαβ + Qαβ(g, ∂g), (11.44)

where Qαβ(g, ∂g) is a term which does not contain any second derivative of g
and which is quadratic in the first derivatives. In the current context, the analogue
of harmonic coordinates would be to set Γ̃ i = 0, for then Eq. (11.41) would
resemble Eq. (11.44). The choice Γ̃ i = 0 corresponds to the Dirac gauge dis-
cussed in Sect. 10.4.2. However the philosophy of the BSSN formulation is to leave
free the coordinate choice, allowing for any value of Γ̃ i. In this respect, a closer
4-dimensional analogue of BSSN is the generalized harmonic decomposition intro-
duced by Friedrich [35] and Garfinkle [36] (see also Ref. [37, 38]) and implemented
by Pretorius for the binary black hole problem [39–42].

The allowance for any coordinate system means that Γ̃ i becomes a new variable,
in addition to γ̃ij, Ãij, Ψ, K, N and β i. One then needs an evolution equation for it.
But we have already derived such an equation in Sect. 10.3.4, namely Eq. (10.57).
Equation (11.40) is then a constraint on the system, in addition to the Hamiltonian
and momentum constraints.

11.4.4 The Full Scheme

By collecting together Eqs. (7.88)–(7.91), (11.41), (11.42) and (10.57), we can write
the complete system of evolution equations for the BSSN scheme:

(
∂

∂t
− Lβ

)
Ψ = Ψ

6

(
D̃iβ

i − NK
)

(11.45)

(
∂

∂t
− Lβ

)
γ̃ij = −2NÃij − 2

3
D̃kβ

k γ̃ij (11.46)

(
∂

∂t
− Lβ

)
K = −Ψ −4

(
D̃iD̃

iN + 2D̃i ln Ψ D̃iN
)

+ N

[

4π(E + S) + ÃijÃ
ij + K2

3

]

(11.47)



268 11 Evolution Schemes

(
∂

∂t
− Lβ

)
Ãij = −2

3
D̃kβ

kÃij + N

[
KÃij − 2γ̃ klÃik Ãjl − 8π

(
Ψ −4Sij − 1

3
Sγ̃ij

)]

+ Ψ −4
{
−D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j ln Ψ D̃iN

+ 1

3

(
D̃kD̃kN − 4D̃k ln Ψ D̃kN

)
γ̃ij

+ N

[
1

2

(
−γ̃ klD̄kD̄l γ̃ij + γ̃ikD̄jΓ̃

k + γ̃jkD̄iΓ̃
k
)

+ Qij(γ̃ , D̄γ̃ )

− 1

3

(
D̄kΓ̃

k + Q(γ̃ , D̄γ̃ )
)

γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i ln Ψ D̃j ln Ψ

+2

3

(
D̃kD̃k ln Ψ − 2D̃k ln Ψ D̃k ln Ψ

)
γ̃ij

]}
.

(11.48)

(
∂

∂t
− Lβ

)
Γ̃ i = 2

3
D̄kβ

kΓ̃ i + γ̃ jkD̄jD̄kβ
i + 1

3
γ̃ ijD̄jD̄kβ

k − 2ÃijD̄jN

− 2N

[
8πΨ 4pi − ÃjkΔi

jk − 6ÃijD̄j ln Ψ + 2

3
γ̃ ijD̄jK

] ,

(11.49)
where Qij(γ̃ , D̄γ̃ ) and Q(γ̃ , D̄γ̃ ) are defined by Eqs. (11.39) and (11.43) and we
have used Lβ Γ̃ i = βkD̄kΓ̃

i − Γ̃ kD̄kβ
i to rewrite Eq. (10.57). These equations

must be supplemented with the constraints (7.92) (Hamiltonian constraint), (7.93)
(momentum constraint), (7.18) (“unit” determinant of γ̃ij), (7.61) (Ã traceless) and
(11.40) (definition of Γ̃ ) :

D̃iD̃iΨ − 1
8 R̃Ψ +

(
1
8 ÃijÃij − 1

12 K2 + 2πE
)

Ψ 5 = 0 (11.50)

D̃jÃij + 6ÃijD̃j ln Ψ − 2
3 D̃iK = 8πpi (11.51)

det(γ̃ij) = f (11.52)

γ̃ ijÃij = 0 (11.53)

Γ̃ i + D̄jγ̃
ij = 0 . (11.54)

The unknowns for the BSSN system are Ψ, γ̃ij, K, Ãij and Γ̃ i. They involve
1+6+1+6+3 = 17 components, which are evolved via the 17-component equations
(11.45)–(11.49). The constraints (11.50)–(11.54) involve 1+3+1+1+3 = 9 compo-
nents, reducing the number of degrees of freedom to 17 − 9 = 8. The coordinate
choice, via the lapse function N and the shift vector β i, reduces this number to
8−4 = 4 = 2 × 2, which corresponds to the 2 degrees of freedom of the gravita-
tional field expressed in terms of the couple (γ̃ij, Ãij).
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The complete system to be solved must involve some additional equations result-
ing from the choice of lapse N and shift vector β, as discussed in Chap. 10. The
well-posedness of the whole system is discussed in Refs. [43] and [44], for some
usual coordinate choices, like harmonic slicing (Sect. 10.2.3) with hyperbolic gamma
driver (Sect. 10.3.5).

11.4.5 Applications

The BSSN scheme is by far the most widely used evolution scheme in contemporary
numerical relativity. It has notably been used for computing gravitational collapses
[45–52], mergers of binary neutron stars [53–61], mergers of binary black holes
[62–74] and mergers of neutron star—black holes binaries [75] (see [76–78] for
a review). In addition, most recent codes for general relativistic MHD employ the
BSSN formulation [79– 84].
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85. Chruściel, P.T., Friedrich, H. (eds): The Einstein equations and the large scale behavior of
gravitational fields—50 years of the Cauchy problem in general relativity. Birkhäuser Verlag,
Basel (2004)



Appendix A
Conformal Killing Operator and
Conformal Vector Laplacian

In this Appendix, we investigate the main properties of two important vectorial
operators on Riemannian manifolds: the conformal Killing operator and the
associated conformal vector Laplacian. The framework is that of a single three-
dimensional manifold R; endowed with a Riemannian metric (cf. Sect. 2.3.2). In
practice, R is embedded in some spacetime ðM; gÞ; as being part of a 3+1 foliation
ðRtÞt2R; but we shall not require such a feature here. For concreteness, we shall
denote Riemannian metric on R by ~c; because in most applications of the 3+1
formalism, the conformal Killing operator appears for the metric ~c conformally
related to the physical metric c and introduced in Chap. 7. But again, we shall not
use the hypothesis that ~c is derived from some ‘‘physical’’ metric c: So in all what
follows, ~c can be replaced by the physical metric c or any other Riemannian
metric, as for instance the background metric f introduced in Chaps. 7 and 8.

A.1 Conformal Killing Operator

A.1.1 Definition

The conformal Killing operator
~
L associated with the metric ~c is the linear

mapping from the space TðRÞ of vector fields on R to the space of symmetric
tensor fields of type ð2; 0Þ defined by

8v 2TðRÞ; ð~LvÞij :¼ ~Div j þ ~D jvi � 2
3

~Dkvk~cij ; ðA:1Þ
where

~
D is the Levi-Civita connection associated with ~c and ~Di :¼ ~cij ~Dj: An

immediate property of
~
L is to be traceless with respect to ~c; thanks to the �2=3

factor in the above definition: for any vector v;

~cijð~LvÞij ¼ 0: ðA:2Þ
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A.1.2 Behavior Under Conformal Transformations

An important property of
~
L is to be invariant, up to some scale factor, with respect

to conformal transformations. Indeed let us consider a metric c conformally related
to ~c:

c ¼ W4~c: ðA:3Þ

In practice c will be the metric induced on R by the spacetime metric g and W the
conformal factor defined in Chap. 7, but we shall not employ this here. So c and ~c
are any two Riemannian metrics on R that are conformally related (we could have
called them c1 and c2Þ and W is simply the conformal factor between them. We can
employ the formul� derived in Chap. 7 to relate the conformal Killing operator of
~c;

~
L with that of c; L say. Formula (7.32) gives

D jvi ¼ cjkDkvi ¼ W�4~cjk ~Dkvi þ 2 vl ~Dl ln Wdi
k þ vi ~Dk ln W� ~Di ln W~cklv

l
� �� �

¼ W�4 ~D jvi þ 2 vk ~Dk ln W~cij þ vi ~D j ln W� v j ~Di ln W
� �� �

:

Hence

Div j þ D jvi ¼ W�4 ~Div j þ ~D jvi þ 4vk ~Dk ln W~cij
� �

Besides, from Eq. (7.33),

� 2
3

Dkvkcij ¼ � 2
3

~Dkvk þ 6vk ~Dk ln W
� �

W�4~cij:

Adding the above two equations, we get the simple relation

ðLvÞij ¼ W�4ð~LvÞij : ðA:4Þ

Hence the conformal Killing operator is invariant, up to the scale factor W�4;
under a conformal transformation.

A.1.3 Conformal Killing Vectors

Let us examine the kernel of the conformal Killing operator, i.e. the subspace

ker
~
L of TðRÞ constituted by vectors v satisfying

ð~LvÞij ¼ 0: ðA:5Þ

A vector field which obeys Eq. (A.5) is called a conformal Killing vector. It is the
generator of some conformal isometry of ðR;~cÞ: A conformal isometry of ðR;~cÞ is
a diffeomorphism U : R! R for which there exists some scalar field X such that
U�~c ¼ X2~c: Notice that any isometry is a conformal isometry (corresponding to
X ¼ 1Þ; which means that every Killing vector is a conformal Killing vector.
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The latter property is obvious from the definition (A.1) of the conformal Killing
operator. Notice also that any conformal isometry of ðR;~cÞ is a conformal isometry
of ðR; cÞ; where c is a metric conformally related to ~c [cf. Eq. (A.3)]. Of course,

ðR;~cÞ may not admit any conformal isometry at all, yielding ker
~
L¼ f0g: The

maximum dimension of ker
~
L is 10 (taking into account that R has dimension 3). If

ðR;~cÞ is the Euclidean space ðR3; f Þ; the conformal isometries are constituted by
the isometries (translations, rotations) augmented by the homotheties.

A.2 Conformal Vector Laplacian

A.2.1 Definition

The conformal vector Laplacian associated with the metric ~c is the endomorphism
~
DL of the space TðRÞ of vector fields on R defined by the divergence of the
conformal Killing operator:

8v 2TðRÞ; ~
DLvi :¼ ~Djð~LvÞij : ðA:6Þ

From Eq. (A.1),
~
DL vi ¼ ~Dj ~D

iv j þ ~Dj ~D
jvi � 2

3
~Di ~Dkvk ¼ ~Di ~Djv

j þ ~R
i
jv

j þ ~Dj ~D
jvi � 2

3
~Di ~Djv

j

¼ ~Dj ~D
jvi þ 1

3
~Di ~Djv

j þ ~R
i
jv

j;

ðA:7Þ

where we have used the contracted Ricci identity (7.39). Hence
~
DLvi is a second

order operator acting on the vector v; which is the sum of (i) the vector Laplacian
~Dj ~D jvi; (ii) one third of the gradient of the divergence ~Di ~Djv j and (iii) the

curvature term ~R
i
jv

j:

~
DL vi ¼ ~Dj ~D jvi þ 1

3
~Di ~Djv j þ ~R

i
jv

j

ðA:8Þ

The conformal vector Laplacian plays an important role in 3+1 general relativity,
for solving the constraint equations (Chap. 9), but also for the time evolution

problem (Sect. 10.3.2). The main properties of
~
DL have been first investigated by

York [1, 2].

A.2.2 Elliptic Character

Given a point p 2 R and a linear form n 2T�
pðrÞ; the principal symbol of

~
DL with

respect to p and n is the linear map Pðp;nÞ : TpðRÞ !TpðRÞ defined as follows (see
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e.g. [3]). First of all, keep only the terms involving the highest derivatives in
~
DL (i.e. the second order ones); in terms of components, the operator is then
reduced to

vi �! ~cjk o

ox j

o

oxk
vi þ 1

3
~cik o

oxk

o

ox j
v j ðA:9Þ

Then replace each occurrence of o=ox j by the component nj of the linear form n;

thereby obtaining a mapping which is no longer differential, i.e. that involves only

values of the fields at the point p; this is the principal symbol of
~
DL at p with

respect to n :

Pðp;nÞ :TpðRÞ �!TpðRÞ

v ¼ ðviÞ �! Pðp;nÞðvÞ ¼ ~cjkðpÞnjnkvi þ 1
3

~cikðpÞnknjv
j

� �
;

ðA:10Þ

A differential operator, such as
~
DL; is said to be elliptic on R iff the principal

symbol Pðp;nÞ is an isomorphism for every p 2 R and every non-vanishing linear
form n 2T�

pðRÞ: It is said to be strongly elliptic if all the eigenvalues of Pðp;nÞ are
non-vanishing and have the same sign. To check whether this is actually the case

for
~
DL; let us consider the bilinear form

~
Pðp;nÞ associated to the endomorphism

Pðp;nÞ by the conformal metric:

8ðv;wÞ 2TpðRÞ2;
~
Pðp;nÞðv;wÞ ¼ ~c v;Pðp;nÞðwÞ

� �
: ðA:11Þ

Its matrix
~
Pij is deduced from the matrix Pi

j of Pðp;nÞ by lowering the index i with
~cðpÞ: We get

~Pij ¼ ~cklðpÞnknl~cijðpÞ þ
1
3
ninj: ðA:12Þ

Hence
~
Pðp;nÞ is clearly a symmetric bilinear form. Moreover it is positive definite

for n 6¼ 0: for any vector v 2TpðRÞ such that v 6¼ 0; we have

~
Pðp;nÞðv; vÞ ¼ ~cklðpÞnknl~cijðpÞviv j þ 1

3
ðniv

iÞ2 [ 0;

where the inequality follows from the positive definite character of ~c:
~
Pðp;nÞ being a

positive definite symmetric bilinear form, we conclude that Pðp;nÞ is an
isomorphism and that all its eigenvalues are real and strictly positive. Therefore
~
DL is a strongly elliptic operator.

A.2.3 Kernel

Let us now determine the kernel of
~
DL: Clearly this kernel contains the kernel of

the conformal Killing operator
~
L: Actually it is not larger than that kernel:

ker
~
DL ¼ ker

~
L: ðA:13Þ
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Let us establish this property. For any vector field v 2TðRÞ; we have
Z

R
~cijv

i ~DLv j
ffiffiffi
~c

p
d3x ¼

Z

R
~cijv

i ~Dlð~LvÞjl
ffiffiffi
~c

p
d3x

¼
Z

R

~Dl ~cijv
ið~LvÞjl

h i
� ~cij

~Dlv
ið~LvÞjl

n o ffiffiffi
~c

p
d3x

¼
I

oR
~cijv

ið~LvÞjl~sl

ffiffiffi
~q

p
d2y�

Z

R
~cij

~Dlv
ið~LvÞjl

ffiffiffi
~c

p
d3x; ðA:14Þ

where the Gauss–Ostrogradsky theorem has been used to get the last line. We shall
consider two situations for ðR;~cÞ:

• R is a closed manifold, i.e. is compact without boundary;
• ðR;~cÞ is an asymptotically flat manifold, in the sense made precise in Sect. 8.2.

In the former case the lack of boundary of R implies that the first integral in the
right-hand side of Eq. (A.14) is zero. In the latter case, we will restrict our
attention to vectors v which decay at spatial infinity according to (cf. Sect. 8.2)

vi ¼ Oðr�1Þ ðA:15Þ

ovi

ox j
¼ Oðr�2Þ; ðA:16Þ

where the components are to be taken with respect to the asymptotically Cartesian
coordinate system ðxiÞ introduced in Sect. 8.2. The behavior (A.15, A.16) implies

við~LvÞjl ¼ Oðr�3Þ;

so that the surface integral in Eq. (A.14) vanishes. So for both cases ðR closed or
asymptotically flat) Eq. (A.14) reduces to

Z

R
~cijv

i ~DLv j
ffiffiffi
~c

p
d3x ¼ �

Z

R
~cij

~Dlv
ið~LvÞjl

ffiffiffi
~c

p
d3x: ðA:17Þ

In view of the right-hand side integrand, let us evaluate

~cij~cklð~LvÞikð~LvÞjl ¼~cij~cklð~Divk þ ~DkviÞð~LvÞjl � 2
3

~Dmvm ~cik~cij|ffl{zffl}
dk

j

~cklð~LvÞjl

¼ ~ckl
~Djv

k þ ~cij
~Dlv

i
� �

ð~LvÞjl � 2
3

~Dmvm ~cjlð~LvÞjl
|fflfflfflffl{zfflfflfflffl}

0

¼ 2~cij
~Dlv

ið~LvÞjl;

where we have used the symmetry and the traceless property of ð~LvÞjl to get the
last line. Hence Eq. (A.17) becomes

Z

R
~cijv

i ~DLv j
ffiffiffi
~c

p
d3x ¼ � 1

2

Z

R
~cij~cklð~LvÞikð~LvÞjl

ffiffiffi
~c

p
d3x:
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Let us assume now that v 2 ker
~
DL:

~
DLv j ¼ 0: Then the left-hand side of the above

equation vanishes, leaving
Z

R
~cij~cklð~LvÞikð~LvÞjl

ffiffiffi
~c

p
d3x ¼ 0: ðA:18Þ

Since ~c is a positive definite metric, we conclude that ð~LvÞij ¼ 0; i.e. that v 2
ker

~
L: This demonstrates property (A.13). Hence the ‘‘harmonic functions’’ of the

conformal vector Laplacian
~
DL are nothing but the conformal Killing vectors (one

should add ‘‘which vanish at spatial infinity as (A.15) and (A.16)’’ in the case of an
asymptotically flat space).

A.2.4 Solutions to the Conformal Vector Poisson Equation

Let now discuss the existence and uniqueness of solutions to the conformal vector
Poisson equation

~
DLvi ¼ Si ; ðA:19Þ

where the vector field S is given (the source). Again, we shall distinguish two
cases: the closed manifold case and the asymptotically flat one. When R is a closed
manifold, we notice first that a necessary condition for the solution to exist is that
the source must be orthogonal to any vector field in the kernel, in the sense that

8C 2 ker
~
L;

Z

R
~cijC

iS j
ffiffiffi
~c

p
d3x ¼ 0: ðA:20Þ

This is easily established by replacing S j by
~
DLvi and performing the same

integration by part as above to get
Z

R
~cijC

iS j
ffiffiffi
~c

p
d3x ¼ � 1

2

Z

R
~cij~cklð~LCÞikð~LvÞjl

ffiffiffi
~c

p
d3x:

Since, by definition ð~LCÞik ¼ 0; Eq. (A.20) follows. If condition (A.20) is fulfilled,
it can be shown that Eq. (A.19) admits a solution and that this solution is unique up
to the addition of a conformal Killing vector.

Remark A.1 If the metric ~c does not admit any conformal Killing vector, condition
(A.20) is trivially fulfilled.

In the asymptotically flat case, we assume that, in terms of the asymptotically
Cartesian coordinates ðxiÞ introduced in Sect. 8.2

Si ¼ Oðr�3Þ: ðA:21Þ
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Moreover, because of the presence of the Ricci tensor in
~
DL; one must add the

decay condition

o2~cij

oxkoxl
¼ Oðr�3Þ ðA:22Þ

to the asymptotic flatness conditions introduced in Sect. 8.2 [Eqs. (8.1)–(8.2)].
Indeed Eq. (A.22) along with Eqs. (8.1) guarantees that

~Rij ¼ Oðr�3Þ: ðA:23Þ

Then a general theorem by Cantor (1979) [4], regarding elliptic operators on
asymptotically flat manifolds, can be invoked (see Appendix B of Ref. [5] as well
as Ref. [6]) to conclude that the solution of Eq. (A.19) with the boundary condition

vi ¼ 0 when r ! 0 ðA:24Þ

exists and is unique. The possibility to add a conformal Killing vector to the
solution, as in the compact case, does no longer exist because there is no
conformal Killing vector which vanishes at spatial infinity on asymptotically flat
Riemannian manifolds.

Regarding the numerical techniques to solve the conformal vector Poisson
equation (A.19), let us mention that a very accurate spectral method has been
developed by Grandclément et al. [7] in the case of the Euclidean space: ðR;~cÞ ¼
ðR3; fÞ: It is based on the use of Cartesian components of vector fields altogether
with spherical coordinates. An alternative technique, using both spherical
components and spherical coordinates is presented in Ref. [8].
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Appendix B
Sage Codes

Sage is a modern and powerful computer algebra system; it is open-source and
freely downloadable from

http://sagemath.org/
Various Sage codes are provided below to perform otherwise tedious

computations. These codes can be downloaded as Sage worksheets from the
book web page

http://relativite.obspm.fr/3p1

B.1 Riemann Tensor

Metric tensor:

# manifold dimension

n = 3

# coordinates

var(0ro, th, ph, b0) ; x = [ro, th, ph]

## var(0r, th, ph0) ; x = [r, th, ph]

## var(0th, ph0) ; x = [th, ph]

# H^3 metric :

g = [[b^2,0,0], [0,(b*sinh(ro))^ 2,0], \

[0,0,(b*sinh(ro)*sin(th))^ 2]]

## R^3 metric :

## g = [[1,0,0],[0,r^2,0],[0,0,(r*sin(th))^2]]

## S^ 2 metric :

## g = [[r^2,0], [0, (r*sin(th))^ 2]]

g_mat = matrix(g)

ginv_mat = g_mat.inverse()

ginv = [[ginv_ mat[i,j].simplify_full() for j in range(n)] \

for i in range(n)]
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Christoffel symbols:

Chr0 = [[[ sum(ginv[i][l]/2 * (diff(g[l][k],x[j]) \

+ diff(g[j][l],x[k]) - diff(g[j][k],x[l])) \

for l in range(n)) for k in range(n) ] for j in range(n) ] \

for i in range(n) ]

Chr = [[[ Chr0[i][j][k].simplify_full() for k in range(n) ] \

for j in range(n) ] for i in range(n) ]

Riemann tensor:

Riem0 = [[[[ diff(Chr[i][j][l],x[k]) - diff(Chr[i][j][k],x[l]) \

+ sum(Chr[i][m][k] * Chr[m][j][l] \

- Chr[i][m][l] * Chr[m][j][k] for m in range(n))\

for l in range(n) ] for k in range(n) ] for j in range(n) ] \

for i in range(n) ]

Riem = [[[[ Riem0[i][j][k][l].simplify_full() \

for l in range(n) ] for k in range(n) ] for j in range(n) ] \

for i in range(n) ]

Ricci tensor and scalar curvature:

Ric0 = [[ sum(Riem[k][i][k][j] for k in range(n) ) \

for j in range(n) ] for i in range(n) ]

Ric = [[ Ric0[i][j].simplify_full() for j in range(n) ] \

for i in range(n) ]

Rscal0 = sum(sum(ginv[i][j] * Ric[i][j] \

for j in range(n)) for i in range(n))

Rscal = Rscal0.simplify_full()

Check of maximally symmetric character:

max_sym0 = [[[[ Riem[i][j][k][l] - Rscal/(n*(n-1)) \

* (identity_matrix(n)[i,k] * g[j][l] \

- identity_matrix(n)[i,l] * g[j][k]) for l in range(n) ] \

for k in range(n) ] for j in range(n) ] for i in range(n)]

max_sym = [[[[max_sym0[i][j][k][l].simplify_full ()\

for l in range(n) ] for k in range(n) ] \

for j in range(n) ] for i in range(n) ]

B.2 Hyperboloidal Slicing of Minkowski Spacetime

Here we present the Sage code used in Examples 4.1–4.4 and 5.1, devoted to the
slicing of Minkowski spacetime ðM; gÞ by a family of hyperbolic spaces Rt�H

3:
Hereafter ðw; x; y; zÞ are Minkowskian coordinates of M: Aiming to producing
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two-dimensional plots, we set y ¼ z ¼ 0 in the formulae of Examples 4.1–4.4 and
5.1. In other words, we work only in the ðw; xÞ plane. In addition, we use units for
which b ¼ 1:

Preliminaries:

from matplotlib import rc

rc(0text0, usetex=True) # using TeX rendering in labels

var(0w x0) # declaring (w,x) as the basic coordinates

Scalar function f defining the foliation as w ¼ f ðx; tÞ [Eq. (4.13)]:

def fw(x,t) :

. . . return t + sqrt(1+x*x)

Lapse function [Eq. (4.14)], unit normal vector [Eq. (4.16)], 4-acceleration of
Eulerian observers [vector metric-dual to the 1-form given by Eq. (4.21)] and shift
vector [Eq. (5.41)]:

def nn(x) :

. . . return sqrt(1+x*x)

def vect_n(w,x) :

. . . return [nn(x), x]

def vect_a(w,x) :

. . . return [x^ 2/nn(x), x]

def vect_beta(w,x) :

. . . return [-x^ 2, -x*nn(x)]

Plotting selected slices:

ns = 9 # number of slices

tmin = -4 ; tmax = 4

# selected values of t :

ts = [ tmin + i*(tmax-tmin)/(ns-1.) for i in range(ns)]

graph = Graphics()

for i in range(ns) :

. . . graph += plot(fw(x,ts[i]),(x,-3,3))

Adding the future light cone originating from (w,x) = (0,0):

cone = line([(-3,3),(0,0),(3,3)], color = ‘‘green’’, \

linestyle=0-0, thickness=0.5)

graph += cone
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Adding points A and B, as well as vectors n and a at these points:

x1 = 1 ; w1 = fw(x1, 0) # point B

w2 = w1? vect_n(w1,x1)[0] ; x2 = x1? vect_n(w1,x1)[1] # n at B

points = circle((x1,w1),0.05, fill=True, color=‘‘black’’) \

? text(‘‘$B$’’, (x1-0.15,w1?0.18), fontsize=16, color=‘‘black’’)

graph ? = line([(0,0), (x1,w1)], color=‘‘black’’,
linestyle=0--0)

vectors = arrow((x1,w1), (x2,w2)) \

? text(0$\mathbf{n}$0,(x2,w2?0.1), fontsize=16

w2 = w1? vect_a(w1,x1)[0] ; x2 = x1? vect_a(w1,x1)[1] # a at B

vectors ?= arrow((x1,w1), (x2,w2)) \

? text (0$ \mathbf{a}$0,(x2,w2?0.1), fontsize=16)

x1 = 0 ; w1 = fw(x1, 0) # point A

w2 = w1? vect_n(w1,x1)[0] ; x2 = x1? vect_n(w1,x1)[1] # n at A

points ?= circle((x1,w1),0.05, fill=True, color=‘‘black’’) \

? text(‘‘$A$’’, (x1?0.15,w1?0.15), fontsize=16, color=‘‘black’’)

vectors ?= arrow((x1,w1), (x2,w2)) \

? text(0$\mathbf{n}$0,(x2?0.15,w2-0.1), fontsize=16)

Producing Fig. 4.4:

label_slice = text(0$\sigma_{-3}$0, (3,0.35), fontsize=16) \

. . . ? text(0$\sigma_{-2}$0, (3,1.35), fontsize=16)\

. . . ? text(0$\sigma}_{-1\}\$0, (3,2.35), fontsize=16) \

. . . ? text(0$\{sigma}_{0\}\$0, (3,3.35), fontsize=16) \

. . . ? text(0$\sigma_{1}\$0, (3,4.15), fontsize=16) \

. . . ? text(0$ \sigma}_{2}\$0, (1.5,4.15), fontsize=16)

show(graph?label_slice?points?vectors, xmin=-3, xmax=3, \

ymin=-1, ymax=4, aspect_ratio=1, \

axes_labels=[0$x/b$0,0$w/b$0], axes_pad=0, fontsize=12)

Producing Fig. 5.2:

x1 = 1 ; w1 = fw(x1, 0) # point B

w2 = w1 ? vect_n(w1,x1)[0] ; x2 = x1 ? vect_n(w1,x1)[1] # n at B

vectors = arrow((x1,w1), (x2,w2)) \

? text(r0$\mathbf{n}$0,(x2-0.1,w2?0.1), fontsize=16)

# Vector m = N n :

w3 = w1 ? nn(x1)*vect_n(w1,x1)[0]

x3 = x1 ? nn(x1)*vect_n(w1,x1)[1]

vectors ?= arrow((x1,w1), (x3,w3)) \

? text(r0$N\mathbf{n}$0,(x3?0.15,w3?0.1), fontsize=16)

# Vector d/dt :
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w4 = w1 ? 1 ; x4 = x1 ;

vectors ?= arrow((x1,w1), (x4,w4)) \

? text(r0$\partial_t$0,(x4?0.2,w4-0.2), fontsize=16)

# Shift vector :

w5 = w1 ? vect_beta(w1,x1)[0] ; x5 = x1 ? vect_beta(w1,x1)[1]

vectors ?= arrow((x1,w1), (x5,w5)) \

? text(r0$\boldmath $\beta$0,(x5,w5?0.2), fontsize=16)

joint_line = line([(x3,w3), (x4,w4), (x5,w5)], \

color = ‘‘black’’, linestyle=0:0, thickness=2)

x_const_line = line([(x1,-1), (x1,4)], color = ‘‘red’’, \

linestyle=0--0) ? text(r0$\rho, \theta, \varphi) = \mathrm{const}$0,\
(x1?1, -0.8), color=‘‘red’’, fontsize=16)

show(graph?label_slice?points?vectors?joint_line?

x_const_line, \

xmin=-3, xmax=3, ymin=-1, ymax=4, aspect_ratio=1, \

axes_labels=[0$x/b$0,0$w/b$0], axes_pad=0, fontsize=12)

B.3 Other Sage Codes

Other Sage codes related to the 3+1 formalism can be found at the URL
http://relativite.obspm.fr/3p1.
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Index

p-form, 13, 27
1?3 formalism, 1
1?log slicing, 234
1-form, 11
2-form, 117

3?1, 1
decomposition, 1

antisymmetric tensor, 118
symmetric tensor, 75

formalism, 1
Maxwell equations, 119 , 122

3-metric, 32
4-acceleration, 61
4-current

baryon, 109
electric, 118

4-momentum
ADM, 170

4-velocity
Eulerian observer, 60
fluid, 106

A
Action

for general relativity, 162
Hilbert, 94, 95, 97, 162

3?1 writing, 82, 95
ADM, 1

4-momentum, 172
equations, 88
Hamiltonian, 96
mass, 163

momentum, 171
Affine connection, 17
Algebraic slicing, 234
Angular, 60

momentum, 60
Komar, 179

Approximate, 211
maximal slicing, 228
minimal distortion, 239

Asymptotically
flat, 157, 190
maximal gauge, 174

Atlas, 7
differentiable, 7

B
Background metric, 135
BAM-GRHD code, 117
Baryon

number
4-current, 109
conservation, 109
current, 109
density, 109

Basis
dual, 10, 12
left-handed, 17
natural, 9
right-handed, 17

Bianchi identity, 22
contracted, 24, 102, 257

Bilinear form, 12
Bondi mass, 159
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B (cont.)
Bowen–York

extrinsic curvature, 201
initial Data, 198

Boyer–Lindquist coordinates, 183
BSSN scheme, 2, 262

C
Cauchy

problem, 88, 91
surface, 55

Cauchy–Kovalevskaya theorem, 92
CFC, 152
Chart, 6
Closed manifold, 190
CMC, 190
CoCoNuT code, 117
Codazzi–Mainardi relation, 53
Codazzi relation, 53

contracted, 53
Collapse of the lapse, 230
Commutator, 13
Component

of a linear form, 11
of a tensor, 12
w.r.t. a coordinate system, 9

Conformal
curvature, 24
equivalence class, 134
flatness approximation, 152

extended, 155
isometry, 274
Killing

operator, 154, 190
vector, 191

lapse, 204
metric, 133, 137
thin sandwich, 205

extended, 207
time slicing, 233
transformation, 133
transverse-traceless, 192
vector laplacian, 190

Conformally
flat, 134, 194

Conjugate momentum, 96, 97
Connection

affine, 18
coefficients, 18
Levi–Civita, 20, 30
spacetime, 29

Conservation law, 113
Constant mean curvature, 192

Constrained
data, 192
scheme, 255

Constraint, 92
equations, 92
violating modes, 261

Contracted
Codazzi relation, 53
Bianchi identity, 22, 102, 259
Gauss relation, 51

Contravariant, 12
Coordinate, 6

line, 8
system, 6
velocity, 108

Coordinates
Boyer–Lindquist, 184
De Donder, 231, 267
Eddington–Finkelstein, 183
Eulerian, 236
Harmonic, 93, 231, 267
isotropic, 138, 168
Kruskal–Szekeres, 199
minimal distortion, 238
normal, 236
Painlevé–Gullstrand, 165, 224
Schwarzschild, 138, 163, 180
spatial harmonic, 247

Cosmological constant, 74
Cotton tensor, 134
Cotton–York tensor, 134
Countable base, 6
Covariant, 12

derivative, 18
along a vector, 18, 20

Cross product, 125
CTS, 205
CTT, 192
Curvature

extrinsic, 24
Gaussian, 34
intrinsic, 24, 33
mean, 35
principal, 35
scalar, 23
tensor, 21

Curve, 8

D
d’Alembertian, 231
de Donder coordinates, 231, 267
Derivative

covariant, 18, 20
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exterior, 27, 119
Diffeomorphism, 7
Differentiable

atlas, 7
manifold, 7

Dimension of a manifold, 5
Dirac gauge, 248, 256, 267
Direction (principal), 35
Distortion

approximate minimal, 241
minimal, 238
pseudo-minimal, 241
tensor, 237

Divergence
tensor, 20, 118
vector, 22

Domain of dependence, 93
Dominant energy condition, 170, 194
Dual

basis, 10, 12
vector space, 10

E
Eccentricity in initial data, 216
Eddington–Finkelstein coordinates, 183
Einstein

equation, 73
summation convention, 9
tensor, 24, 258

Einstein–Christoffel system, 262
Einstein–Poincaré simultaneity, 60
Einstein–Rosen bridge, 199, 224
Electric

4-current, 119
charge density, 119
current, 119
field, 117

Electromagnetic
field, 117
stress-energy, 122

Elliptic, 249
strongly, 276

Embedding, 30
Energy

condition, 170
dominant, 170, 194
weak, 170

conservation, 102, 113
density, 74, 106
flux, 75, 105
internal, 111

Euclidean
metric, 23

space, 275
Euler

equation, 113
non-relativistic, 113

Eulerian
coordinates, 236
gauge, 236
observer, 60

Evolution
scheme

constrained, 255
free, 255

vector, 57
Excision, 175
Exotic

R
4, 8

sphere, 7
Extended conformal thin sandwich, 205
Exterior

calculus, 117
derivative, 27, 119

Extrinsic
curvature, 24

Bowen–York, 200

F
Faraday tensor, 117
Fiducial observer, 60
Field

scalar, 13
tensor, 13

First fundamental form, 32
Flat

conformally, 134
manifold, 23
metric, 23, 134, 152
spacetime

asymptotically, 159
Flow, 25
Fluid

particle, 117
perfect, 106

Flux
conservative, 114
vector, 114

Foliation, 56
Form

p-form, 13, 27
bilinear, 12
linear, 10

Frame field, 13
Free

data, 192
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F (cont.)
evolution scheme, 255

Fully constrained scheme, 255
Fundamental form

first, 32
second, 35

Future, 30

G
Gamma

driver
hyperbolic, 244
parabolic, 244

freezing, 242
Gauge

asymptotically maximal, 174
Dirac, 248 , 256, 267
Eulerian, 236
minimal distortion, 238
quasi-isotropic, 174
radiation, 240

Gauss
relation, 51

contracted, 51
scalar, 51

Gaussian
curvature, 34
normal coordinates, 88, 89

Generalized harmonic decomposition, 2, 267
Geodesic

curve, 49
slicing, 89, 224
totally, 49

Globally hyperbolic, 55
Godunov, 114
g-orthogonal, 14

basis, 15
Gradient, 11

H
Hamilton equations, 97
Hamiltonian

ADM, 97
constraint, 77

violation, 257
density, 96
formulation of general relativity, 88, 94
gravitational, 162
representation, 210

Harmonic

decomposition (generalized), 2, 267
coordinates, 93, 231, 267
slicing, 231

Hausdorff space, 6
Helical

Killing vector, 212
symmetry, 211

High-resolution shock-capturing, 114
Hilbert action, 94, 97, 162

3?1 writing, 95
Hodge dual, 118
Hole, 175
Homeomorphism, 6
HRSC, 114
hyperbolic

3-space, 42
Gamma driver, 244

Hyperboloid, 41
Hyperboloidal slicing, 59
Hyperplane, 41
Hypersurface, 30

null, 32
spacelike, 32
timelike, 32
totally geodesic, 49

I
Ideal magnetohydrodynamics, 123
Index

lowering, 15
raising, 15

Induced metric, 32
Infinitesimal displacement vector, 9
Infinity

null, 159
spatial, 160

Initial data
constrained, 192
free, 192

Intrinsic curvature, 24, 33
Inverse

conformal metric, 137
metric, 15

Irrotational, 214
Isenberg–Wilson–Mathews

approximation, 152
Isolated body, 159
Isometry, 199

conformal, 274
Isotropic coordinates, 138, 168
IWM, 152, 175
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K
Kerr spacetime, 181, 201
Killing

equation, 177
operator

conformal, 154
vector, 174, 209

conformal, 188
helical, 211

Komar
angular momentum, 182
mass, 176

in non-stationary spacetimes, 182
of a hole, 181

Kronecker symbol, 10
Kruskal–Szekeres

coordinates, 199
diagram, 199

KST formulation, 262

L
Lagrangian representation, 210
Laplace

equation, 195, 196
operator, 265

Laplacian
vector, 190

conformal, 273
Lapse, 57

collapse, 230
conformal, 204

Leaf, 56
Left-handed basis, 17
Legendre transform, 96
Levi–Civita

connection, 20, 30, 33
tensor, 17, 118, 134, 178, 201

of a hypersurface, 143
Lichnerowicz equation, 150, 175, 189, 192
Lie

derivative, 25, 176
dragged, 58
transport, 176

Line
coordinate, 8
element, 14

Linear form, 10
Locally nonrotating observer, 60
Longitudinal part, 189
Lorentz

factor, 107

force, 117, 129
Lorentzian

manifold, 15
metric, 29

Lowering an index, 15

M
Magnetic

field, 117
permeability, 119

Magnetohydrodynamics, 123
Manifold, 5

differentiable, 7
Lorentzian, 29
pseudo-Riemannian, 13
topological, 7

Mass
ADM, 160
Komar, 176

Maximal
hypersurface, 150
slicing, 153, 225
spacetime, 93

Maximally symmetric space, 42
Maxwell equations, 118
Maxwell–Ampère equation, 122
Maxwell–Faraday equation, 121
Maxwell–Gauss equation, 122
Mean curvature, 35
Metric, 13

background, 135
conformal, 135
flat, 135, 152
induced, 32
tensor, 13

MHD, 123
Euler equation, 127

Minima
distortion, 236
surface, 197

Minkowski spacetime, 41, 59
Momentarily static, 194
Momentum

ADM, 169
conjugate, 88, 95, 96
conservation, 105
constraint, 78

violation, 255
density, 74, 105

Moving
frame, 13
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M (cont.)
puncture, 234

Musical isomorphism, 16

N
Natural basis, 9
Non-degenerate, 14
Non-expanding horizon, 214
Nonrotating observer, 60
Normal

coordinates, 89, 233
evolution vector, 57

Null
cone, 15
hypersurface, 33
vector, 15

O
Observer

Eulerian, 60
fiducial, 60
locally nonrotating, 60
zero-angular-momentum, 60

Ohm’s law, 123
Operator

Laplace, 263
wave, 263

Order of a tensor, 12
Orientable

manifold, 17
time, 30

Orientation, 118
of a manifold, 17

Orthogonal, 14
projector, 44

Orthonormal basis, 15

P
Painlevé–Gullstrand

coordinates, 22, 165
Parabolic Gamma driver , 244
Parallel transport, 18
Parallelly transported, 18
Parameter along a curve, 8
Parametrization, 8
Partially constrained scheme, 255
Particle (fluid), 106
Past, 30
Perfect fluid, 106
Plateau problem, 226
Poincaré transformation, 161

Polar slicing, 230
Poynting vector, 123
Pressure, 106
Principal

curvature, 35
direction, 35
part, 90
symbol, 265

Product
cross, 125
tensor, 12

Projector (orthogonal), 44
Proper

density, 109
internal energy, 111
rest-mass energy density, 111

Pseudo-minimal distortion, 241
Pseudo–Riemannian manifold, 13
Pull-back mapping, 31
Puncture, 200

moving, 234
Push-forward mapping, 31

Q
Quasi-isotropic gauge, 174
Quasi-linear, 91

PDE, 191

R
Radiation gauge, 240
Raising an index, 15
Rank of a tensor, 12
Ricci

equation, 68
identity, 22
scalar, 23
tensor, 23

Riemann
curvature, 21
shock tube problem, 114

Riemannian
manifold, 14
metric, 14

Rigid motion, 216

S
SACRA code, 117
Sage, 281
Scalar

curvature, 23
field, 8 , 13
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Gauss relation, 51
product, 14

Scheme
BSSN, 262
constrained, 255
free evolution, 255
fully constrained, 255
partially constrained, 255

Schwarzschild
coordinates, 138, 163, 178, 180
spacetime, 138, 163, 172, 180, 181

Second fundamental form, 35
Separated space, 6
Shape operator, 34
Shift

superluminal, 80
vector, 79

Signature, 14
Simultaneity, 60, 106
Singularity avoidance, 227
Slice, 56
Slicing, 56

1?log, 233
algebraic, 234
conformal time, 233
geodesic, 89, 224
harmonic, 231
hyperboloidal, 59
maximal, 225

approximate, 230
polar, 230

Smooth, 7
Source vector, 114
Spacelike, 15

hypersurface, 32
vector, 15

Spacetime, 29, 240
connection, 30
Minkowski, 41, 59
stationary, 176

Spatial, 62
coordinates, 78
harmonic coordinates, 247
infinity, 160

SpEC code, 117
Spi group, 161
State vector, 114
Static, 194
Stationary, 196

spacetime, 179
Stress tensor, 75
Stress-energy tensor, 73, 101

Superluminal shift, 80
Supertranslation, 161, 173
Sylvester’s law of inertia, 15
Symmetric, 14

T
Tangent

tensor, 46
vector space, 9
vector, 8

Tensor, 12
density, 126, 135
field, 13
product, 12

Tetrad, 13
Theorema Egregium, 51
Time

orientable, 30
symmetric, 196
vector, 78

Timelike
hypersurface, 33
vector, 15

Topological manifold, 7
Torsion-free, 20
Total energy, 163
Totally geodesic hypersurface, 49
Transverse part, 190
Triad, 13
Trumpet hypersurface, 234
Type of a tensor, 12

V
Valence, 12
Vector, 9

space tangent to a manifold, 9
tangent to a curve, 8

Velocity
coordinate, 108
w.r.t. some observer, 107

Violation
dynamical equation, 259
Hamiltonian constraint, 259
momentum constraint, 259

W
Wave operator, 265
Weak energy condition, 170
Weight of a tensor density, 135
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W (cont.)
Weingarten map, 34
Weyl curvature tensor, 24
Whisky code, 117
Whitney theorem, 6

X
XCFC, 155
XCTS, 207

Y
Yamabe class, 193

Z
ZAMO, 60
Zero-angular-momentum observer, 60
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